Automorphisms of a~free group of infinite rank
Algebra i analiz, Tome 19 (2007) no. 2, pp. 74-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of classifying the automorphisms of a free group of infinite countable rank is investigated. Quite a reasonable generating set for the group $\mathrm{Aut}F_{\infty}$ is described. Some new subgroups of this group and structural results for them are presented. The main result says that the group of all automorphisms is generated (modulo the $IA$-automorphisms) by strings and lower triangular automorphisms.
Keywords: Free group of infinite rank, automorphism group, string.
@article{AA_2007_19_2_a3,
     author = {C. K. Gupta and W. Ho{\l}ubowski},
     title = {Automorphisms of a~free group of infinite rank},
     journal = {Algebra i analiz},
     pages = {74--85},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2007_19_2_a3/}
}
TY  - JOUR
AU  - C. K. Gupta
AU  - W. Hołubowski
TI  - Automorphisms of a~free group of infinite rank
JO  - Algebra i analiz
PY  - 2007
SP  - 74
EP  - 85
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2007_19_2_a3/
LA  - en
ID  - AA_2007_19_2_a3
ER  - 
%0 Journal Article
%A C. K. Gupta
%A W. Hołubowski
%T Automorphisms of a~free group of infinite rank
%J Algebra i analiz
%D 2007
%P 74-85
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2007_19_2_a3/
%G en
%F AA_2007_19_2_a3
C. K. Gupta; W. Hołubowski. Automorphisms of a~free group of infinite rank. Algebra i analiz, Tome 19 (2007) no. 2, pp. 74-85. http://geodesic.mathdoc.fr/item/AA_2007_19_2_a3/

[1] Bryant R. M., Evans D. M., “The small index property for free groups and relatively free groups”, J. London Math. Soc. (2), 55 (1997), 363–369 | DOI | MR | Zbl

[2] Bryant R. M., Groves J. R. J., “Automorphisms of free metabelian groups of infinite rank”, Comm. Algebra, 20 (1992), 783–814 | DOI | MR | Zbl

[3] Bryant R. M., Gupta C. K., “Automorphisms of free nilpotent-by-abelian groups”, Math. Proc. Cambridge Philos. Soc., 114 (1993), 143–147 | DOI | MR | Zbl

[4] Bryant R. M., Macedońska O., “Automorphisms of relatively free nilpotent groups of infinite rank”, J. Algebra, 121 (1989), 388–398 | DOI | MR

[5] Burns R. G., Farouqi I. H., “Maximal normal subgroups of the integral linear group of countable degree”, Bull. Austral. Math. Soc., 15 (1976), 439–451 | DOI | MR | Zbl

[6] Burns R. G., Pi Lian, “Generators for the bounded automorphisms of infinite-rank free nilpotent groups”, Bull. Austral. Math. Soc., 40 (1989), 175–187 | DOI | MR | Zbl

[7] Chandler B., Magnus W., The history of combinatorial group theory, A case study in the history of ideas, Stud. Hist. Math. Phys. Sci., 9, Springer-Verlag, New York, 1982 | MR | Zbl

[8] Cohen J. M., “Aspherical 2-complexes”, J. Pure Appl. Algebra, 12 (1978), 101–110 | DOI | MR | Zbl

[9] Cohen R., “Classes of automorphisms of free groups of infinite rank”, Trans. Amer. Math. Soc., 177 (1973), 99–120 | DOI | MR | Zbl

[10] Cooke R. G., Infinite matrices and sequence spaces, MacMillan and Co., Ltd., London, 1950 | MR | Zbl

[11] Dixon J. D., Mortimer B., Permutation groups, Grad. Texts in Math., 163, Springer-Verlag, New York, 1996 | MR | Zbl

[12] Farouqi I. H., “On an infinite integral linear group”, Bull. Austral. Math. Soc., 4 (1971), 321–342 | DOI | MR | Zbl

[13] Holbubowski W., “Subgroups of infinite triangular matrices containing diagonal matrices”, Publ. Math. Debrecen, 59:1–2 (2001), 45–50 | MR

[14] Holbubowski W., “Parabolic subgroups of Vershik–Kerov's group”, Proc. Amer. Math. Soc., 130 (2002), 2579–2582 | DOI | MR

[15] Holbubowski W., “Most finitely generated subgroups of infinite unitriangular matrices are free”, Bull. Austral. Math. Soc., 66 (2002), 419–423 | DOI | MR

[16] Holbubowski W., “Free subgroups of the group of infinite unitriangular matrices”, Internat. J. Algebra Comput., 13 (2003), 81–86 | DOI | MR

[17] Holbubowski W., “A new measure of growth for groups and algebras” (to appear)

[18] Holbubowski W., Vavilov N. A., “Infinite dimensional general linear groups” (to appear)

[19] Lyndon R. C., Schupp P. E., Combinatorial group theory, Ergeb. Math. Grenzgeb., 89, Springer-Verlag, Berlin-New York, 1977 | MR | Zbl

[20] Macedońska-Nosalska O., “Note on automorphisms of a free abelian group”, Canad. Math. Bull., 23 (1980), 111–113 | MR | Zbl

[21] Macedońska-Nosalska O., “The abelian case of Solitar's conjecture on infinite Nielsen transformations”, Canad. Math. Bull., 28 (1985), 223–230 | MR | Zbl

[22] Magnus W., Karrass A., Solitar D., Combinatorial group theory. Presentations of groups in terms of generators and relations, Intersci. Publ., New York, 1966 | MR

[23] Neumann H., Varieties of groups, Springer-Verlag, New York, 1967 | MR

[24] Nielsen J., “Die Isomorphismengruppe der freien Gruppen”, Math. Ann., 91 (1924), 169–209 | DOI | MR | Zbl

[25] Sharp J. D., Thomas S., “Uniformization problems and the cofinality of the infinite symmetric group”, Notre Dame J. Formal Logic, 35:3 (1994), 328–345 | DOI | MR | Zbl

[26] Sierpiński W., “Sur une décomposition d'ensembles”, Monatsh. Math., 35 (1928), 239–248 | DOI | MR

[27] Thomas S., “The cofinalities of the infinite-dimensional classical groups”, J. Algebra, 179:3 (1996), 704–719 | DOI | MR | Zbl