Normality in group rings
Algebra i analiz, Tome 19 (2007) no. 2, pp. 1-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $KG$ be the group ring of a group $G$ over a commutative ring $K$ with unity. The rings $KG$ are described for which $xx^\sigma=x^\sigma x$ for all $x=\sum_{g\in G}\alpha_gg\in KG$, where $x\mapsto x^\sigma=\sum_{g\in G}\alpha_gf(g)\sigma(g)$ is an involution of $KG$; here $f\colon G\to U(K)$ is a homomorphism and $\sigma$ is an antiautomorphism of order two of $G$.
Keywords: Group ring, normality.
@article{AA_2007_19_2_a0,
     author = {V. A. Bovdi and S. Siciliano},
     title = {Normality in group rings},
     journal = {Algebra i analiz},
     pages = {1--9},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2007_19_2_a0/}
}
TY  - JOUR
AU  - V. A. Bovdi
AU  - S. Siciliano
TI  - Normality in group rings
JO  - Algebra i analiz
PY  - 2007
SP  - 1
EP  - 9
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2007_19_2_a0/
LA  - en
ID  - AA_2007_19_2_a0
ER  - 
%0 Journal Article
%A V. A. Bovdi
%A S. Siciliano
%T Normality in group rings
%J Algebra i analiz
%D 2007
%P 1-9
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2007_19_2_a0/
%G en
%F AA_2007_19_2_a0
V. A. Bovdi; S. Siciliano. Normality in group rings. Algebra i analiz, Tome 19 (2007) no. 2, pp. 1-9. http://geodesic.mathdoc.fr/item/AA_2007_19_2_a0/

[1] Berman S. D., “Ob uravneniyakh $X^m=1$ v tselochislennom gruppovom koltse”, Ukr. mat. zh., 7:3 (1955), 253–261 | MR | Zbl

[2] Bovdi A. A., “Unitarnost multiplikativnoi gruppy tselochislennogo gruppovogo koltsa”, Matem. sb., 119(161):3(11) (1982), 387–400 | MR | Zbl

[3] Bovdi A. A., Gudivok P. M., Semirot M. S., “Normalnye gruppovye koltsa”, Ukr. mat. zh., 37:1 (1985), 3–8 | MR | Zbl

[4] Bovdi V. A., “Normalnye skreschennye gruppovye koltsa”, Dokl. AN Ukr. SSR. Ser. A, 1990, no. 7, 6–8 | MR | Zbl

[5] Bovdi V. A., “Structure of normal twisted group rings”, Publ. Math. Debrecen, 51 (1997), 279–293 | MR | Zbl

[6] Hall M., Group theory, Springer, Berlin, 1971, 410 pp.

[7] Knus M.-A., Merkurjev A., Rost M., Tignol J.-P., The book of involutions, Amer. Math. Soc. Colloq. Publ., 44, AMS, Providence, RI, 1998 | MR | Zbl

[8] Novikov S. P., “Algebraicheskoe postroenie i svoistva ermitovykh analogov $K$-teorii nad koltsami s involyutsiei s tochki zreniya gamiltonova formalizma. Nekotorye primeneniya k differentsialnoi topologii i teorii kharakteristicheskikh klassov, I, II”, Izv. AN SSSR. Ser. mat., 34 (1970), 253–288 ; 475–500 | MR | Zbl | Zbl