Two counterexamples in low-dimensional length geometry
Algebra i analiz, Tome 19 (2007) no. 1, pp. 46-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: Length metric, Hausdorff measure.
@article{AA_2007_19_1_a2,
     author = {D. Burago and S. Ivanov and D. Shoenthal},
     title = {Two counterexamples in low-dimensional length geometry},
     journal = {Algebra i analiz},
     pages = {46--59},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2007_19_1_a2/}
}
TY  - JOUR
AU  - D. Burago
AU  - S. Ivanov
AU  - D. Shoenthal
TI  - Two counterexamples in low-dimensional length geometry
JO  - Algebra i analiz
PY  - 2007
SP  - 46
EP  - 59
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2007_19_1_a2/
LA  - en
ID  - AA_2007_19_1_a2
ER  - 
%0 Journal Article
%A D. Burago
%A S. Ivanov
%A D. Shoenthal
%T Two counterexamples in low-dimensional length geometry
%J Algebra i analiz
%D 2007
%P 46-59
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2007_19_1_a2/
%G en
%F AA_2007_19_1_a2
D. Burago; S. Ivanov; D. Shoenthal. Two counterexamples in low-dimensional length geometry. Algebra i analiz, Tome 19 (2007) no. 1, pp. 46-59. http://geodesic.mathdoc.fr/item/AA_2007_19_1_a2/

[1] Besicovitch A., “On two problems of Loewner”, J. London Math. Soc., 27 (1952), 141–144 | DOI | MR | Zbl

[2] Burago D., Ivanov S., “On asymptotic volume of tori”, Geom. Funct. Anal., 5 (1995), 800–808 | DOI | MR | Zbl

[3] Burago D., Ivanov S., “On asymptotic volume of Finsler tori, minimal surfaces in normed spaces, and symplectic filling volume”, Ann. of Math. (2), 156 (2002), 891–914 | DOI | MR | Zbl

[4] Burago Yu. D., Zalgaller V. A., Geometricheskie neravenstva, Nauka, L., 1980 | MR | Zbl

[5] Busemann H., “Intrinsic area”, Ann. of Math. (2), 48 (1947), 234–267 | DOI | MR

[6] Busemann H., Ewald G., Shephard G., “Convex bodies and convexity on Grassmann cones, I–IV”, Math. Ann., 151 (1963), 1–41 | DOI | MR

[7] Ivanov S. V., “Skhodimost po Gromovu–Khausdorfu i ob'emy mnogoobrazii”, Algebra i analiz, 9:5 (1997), 65–83 | MR | Zbl

[8] Thompson A. C., Minkowski geometry, Encyclopedia Math. Appl., 63, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl