Imbedding theorems for Sobolev spaces on domains with peak and on H\"older domains
Algebra i analiz, Tome 18 (2006) no. 4, pp. 95-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions are obtained for the continuity and compactness of the imbedding operators $W_p^l(\Omega)\to L_q(\Omega)$ and $W_p^l(\Omega)\to C(\Omega)\cap L_\infty(\Omega)$ for a domain with an outward peak. More simple sufficient conditions are presented. Applications to the solvability of the Neumann problem for elliptic equations of order $2l$, $ l\ge1$, for a domain with peak are given. An imbedding theorem for Sobolev spaces on Hölder domains is stated.
@article{AA_2006_18_4_a4,
     author = {V. G. Maz'ya and S. V. Poborchi},
     title = {Imbedding theorems for {Sobolev} spaces on domains with peak and on {H\"older} domains},
     journal = {Algebra i analiz},
     pages = {95--126},
     publisher = {mathdoc},
     volume = {18},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2006_18_4_a4/}
}
TY  - JOUR
AU  - V. G. Maz'ya
AU  - S. V. Poborchi
TI  - Imbedding theorems for Sobolev spaces on domains with peak and on H\"older domains
JO  - Algebra i analiz
PY  - 2006
SP  - 95
EP  - 126
VL  - 18
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2006_18_4_a4/
LA  - ru
ID  - AA_2006_18_4_a4
ER  - 
%0 Journal Article
%A V. G. Maz'ya
%A S. V. Poborchi
%T Imbedding theorems for Sobolev spaces on domains with peak and on H\"older domains
%J Algebra i analiz
%D 2006
%P 95-126
%V 18
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2006_18_4_a4/
%G ru
%F AA_2006_18_4_a4
V. G. Maz'ya; S. V. Poborchi. Imbedding theorems for Sobolev spaces on domains with peak and on H\"older domains. Algebra i analiz, Tome 18 (2006) no. 4, pp. 95-126. http://geodesic.mathdoc.fr/item/AA_2006_18_4_a4/

[1] Sobolev S. L., “Ob odnoi teoreme funktsionalnogo analiza”, Matem. sb., 4(46):3 (1938), 471–497 | Zbl

[2] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, L., 1950

[3] Gagliardo E., “Proprietà di alcune classi di funzioni in più variabili”, Ric. Mat., 7 (1958), 102–137 | MR | Zbl

[4] Besov O. V., “Integralnoe predstavlenie funktsii i teoremy vlozheniya dlya oblasti s gibkim usloviem roga”, Tr. MIAN, 170, 1984, 12–30 | MR | Zbl

[5] Besov O. V., “Teorema vlozheniya Soboleva dlya oblasti s neregulyarnoi granitsei”, Matem. sb., 192:3 (2001), 3–26 | MR | Zbl

[6] Reshetnyak Yu. G., “Integralnye predstavleniya differentsiruemykh funktsii v oblastyakh s negladkoi granitsei”, Sib. matem. zhurn., 21:6 (1980), 108–116 | MR | Zbl

[7] Bojarski B., “Remarks on Sobolev imbedding inequalities”, Proceedings of the conference on Complex Analysis (Joensuu, 1987), Lecture Notes in Math., 1351, Springer, Berlin, 1988, 52–68 | MR

[8] Buckley S., Koskela P., “Sobolev–Poincaré implies John”, Math. Research Letters, 2 (1995), 577–594 | MR

[9] Hajłasz P., Koskela P., “Isoperimetric inequalities and imbedding theorems in irregular domains”, J. London Math. Soc., 58:2 (1998), 425–450 | DOI | MR | Zbl

[10] Kilpeläinen T., Malý J., “Sobolev inequalities on sets with irregular boundaries”, Z. Anal. Anwendungen, 19:2 (2000), 369–380 | MR | Zbl

[11] Poborchii S. V., “Nekotorye kontrprimery k teoremam vlozheniya dlya prostranstv Soboleva”, Vestn. S.-Peterburg. un-ta, 4:22 (1998), 49–58

[12] Mazya V. G., “Klassy oblastei i teoremy vlozheniya funktsionalnykh prostranstv”, Dokl. AN SSSR, 133 (1960), 527–530

[13] Mazya V. G., “O nepreryvnosti i ogranichennosti funktsii iz prostranstv Soboleva”, Problemy matem. analiza, 4, L., 1973, 46–77

[14] Mazya V. G., “O summiruemosti funktsii iz prostranstv S. L. Soboleva”, Problemy matem. analiza, 5, L., 1975, 66–98

[15] Mazya V. G., Prostranstva S. L. Soboleva, L., 1985 | MR | Zbl

[16] Mazya V. G., Poborchii S. V., “Prodolzhenie funktsii iz klassov Soboleva vo vneshnost oblasti s vershinoi pika na granitse, II”, Chekhoslovatskii matem. zhurn., 37 (1987), 128–150 | MR

[17] Maz'ya V. G., Poborchi S. V., Imbedding theorems for Sobolev spaces in domains with cusps, Preprint LiTH–MAT–R–92–14, Linköping University, 1992

[18] Maz'ya V. G., Poborchi S. V., Differentiable functions on bad domains, World Scientific, 1997 | MR

[19] Globenko I. G., “Nekotorye voprosy teorii vlozheniya dlya oblastei s osobennostyami na granitse”, Matem. sb., 57(99):2 (1962), 201–224 | MR | Zbl

[20] Labutin D. A., “Integralnoe predstavlenie funktsii i vlozhenie prostranstv Soboleva na oblastyakh s nulevymi uglami”, Matem. zametki, 61:2 (1997), 201–219 | MR | Zbl

[21] Labutin D. A., “Vlozhenie prostranstv Soboleva na gëlderovykh oblastyakh”, Tr. MIAN, 227, 1999, 170–179 | MR | Zbl

[22] Labutin D. A., “Neuluchshaemost neravenstv Soboleva dlya oblasti s neregulyarnoi granitsei”, Tr. MIAN, 232, 2001, 218–222 | MR | Zbl

[23] Adams R. A., Sobolev Spaces, Academic Press, New York, 1975 | MR | Zbl

[24] Fukushima M., Tomisaki M., “Construction and decomposition of reflecting diffusions on Lipschitz domains with Hölder cusps”, Probability Theory and Related Fields, 106 (1996), 521–557 | DOI | MR | Zbl

[25] Fraenkel L. E., “Formulae for high derivatives of composite functions”, Math. Proc. Camb. Phil. Soc., 83 (1978), 159–165 | DOI | MR | Zbl

[26] Stepanov V. D., “Dvukhvesovye otsenki dlya integralov Rimana–Liuvillya”, Izv. AN SSSR, 54 (1990), 645–656 | Zbl

[27] Poborchii S. V., “O razreshimosti zadachi Neimana dlya ellipticheskikh uravnenii vysokogo poryadka”, Vestn. S.-Peterburg. un-ta, 3:15 (1998), 63–66 | Zbl