On the structure of the set of periods for periodic solutions of some linear integro-differential equations on the multidimensional sphere
Algebra i analiz, Tome 18 (2006) no. 4, pp. 83-94
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem of periodic solutions for the family of linear differential equations $$ (L-\lambda)u\equiv\biggl(\frac1i\frac\partial{\partial t}-a\Delta-\lambda\biggr)u(x,t)=\nu G(u-f) $$ is considered on the multidimensional sphere $x\in S^n$ under the periodicity condition $u|_{t=0}=u|_{t=b}$. Here $a$ and $\lambda$ are given reals, $\nu$ is a fixed complex number, $Gu(x,t)$ is a linear integral operator, and $\Delta$ is the Laplace operator on $S^n$. It is shown that the set of parameters $(\nu,b)$ for which the above problem admits a unique solution is a measurable set of full measure in $\mathbb C\times\mathbb R^+$.
@article{AA_2006_18_4_a3,
author = {Dang Khanh Hoi},
title = {On the structure of the set of periods for periodic solutions of some linear integro-differential equations on the multidimensional sphere},
journal = {Algebra i analiz},
pages = {83--94},
year = {2006},
volume = {18},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AA_2006_18_4_a3/}
}
TY - JOUR AU - Dang Khanh Hoi TI - On the structure of the set of periods for periodic solutions of some linear integro-differential equations on the multidimensional sphere JO - Algebra i analiz PY - 2006 SP - 83 EP - 94 VL - 18 IS - 4 UR - http://geodesic.mathdoc.fr/item/AA_2006_18_4_a3/ LA - ru ID - AA_2006_18_4_a3 ER -
%0 Journal Article %A Dang Khanh Hoi %T On the structure of the set of periods for periodic solutions of some linear integro-differential equations on the multidimensional sphere %J Algebra i analiz %D 2006 %P 83-94 %V 18 %N 4 %U http://geodesic.mathdoc.fr/item/AA_2006_18_4_a3/ %G ru %F AA_2006_18_4_a3
Dang Khanh Hoi. On the structure of the set of periods for periodic solutions of some linear integro-differential equations on the multidimensional sphere. Algebra i analiz, Tome 18 (2006) no. 4, pp. 83-94. http://geodesic.mathdoc.fr/item/AA_2006_18_4_a3/
[1] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980 | MR
[2] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR
[3] Shubin M. A., Psevdodifferentsialnye operatory i spektralnaya teoriya, Nauka, M., 1978 | MR | Zbl
[4] Dang Khan Khoi, “Periodicheskie reshenie nekotorykh nelineinykh evolyutsionnykh sistem estestvennykh differentsialnykh uravnenii”, Differentsialnye uravneniya i smezhnye voprosy, Tezisy dokladov mezhdunarodnoi konferentsii (M., 16–22 maya), 2004, 48
[5] Dang Khan Khoi, “O periodicheskikh resheniyakh nekotorykh nelineinykh evolyutsionnykh estestvennykh differentsialnykh uravnenii na mnogomernom tore”, Vestn. Novg. gos. un-ta., ser. Tekhn. nauki, 28 (2004), 77–79