Branching points area theorems for univalent functions
Algebra i analiz, Tome 18 (2006) no. 1, pp. 187-240.

Voir la notice de l'article provenant de la source Math-Net.Ru

Area theorems of a new type are obtained by considering branching point compositions with univalent functions. Such theorems can be formulated both in the form of integral estimates and in the form of Grunsky and Goluzin-type inequalities.
@article{AA_2006_18_1_a7,
     author = {S. Shimorin},
     title = {Branching points area theorems for univalent functions},
     journal = {Algebra i analiz},
     pages = {187--240},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2006_18_1_a7/}
}
TY  - JOUR
AU  - S. Shimorin
TI  - Branching points area theorems for univalent functions
JO  - Algebra i analiz
PY  - 2006
SP  - 187
EP  - 240
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2006_18_1_a7/
LA  - en
ID  - AA_2006_18_1_a7
ER  - 
%0 Journal Article
%A S. Shimorin
%T Branching points area theorems for univalent functions
%J Algebra i analiz
%D 2006
%P 187-240
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2006_18_1_a7/
%G en
%F AA_2006_18_1_a7
S. Shimorin. Branching points area theorems for univalent functions. Algebra i analiz, Tome 18 (2006) no. 1, pp. 187-240. http://geodesic.mathdoc.fr/item/AA_2006_18_1_a7/

[1] Abuzyarova N., Hedenmalm H., “Branch point area methods in conformal mapping”, J. Anal. Math., 99 (2006), 177–198 | DOI | MR | Zbl

[2] Bergman S., Schiffer M., “Kernel functions and conformal mapping”, Compositio Math., 8 (1951), 205–249 | MR | Zbl

[3] Bognár J., Indefinite inner product spaces, Ergeb. Math. Grenzgeb., 78, Springer-Verlag, New York–Heidelberg, 1974 | MR | Zbl

[4] Carleson L., “A representation formula for the Dirichlet integral”, Math. Z., 73 (1960), 190–196 | DOI | MR | Zbl

[5] Duren P. L., Univalent functions, Grundlehren Math. Wiss., 259, Springer-Verlag, New York, 1983 | MR | Zbl

[6] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, 2-e izd., Nauka, M., 1966 | MR

[7] Hedenmalm H., Shimorin S., “Weighted Bergman spaces and the integral means spectrum of conformal mappings”, Duke Math. J., 127 (2005), 341–393 | DOI | MR | Zbl

[8] Lebedev N. A., Printsip ploschadei v teorii odnolistnykh funktsii, Nauka, M., 1975 | MR | Zbl

[9] Nehari Z., “Inequalities for the coefficients of univalent functions”, Arch. Rational Mech. Anal., 34 (1969), 301–330 | DOI | MR | Zbl

[10] Pommerenke Ch., Univalent functions, With a chapter on quadratic differentials by Gerd Jensen, Studia Math./Math. Lehrbücher, XXV, Vandenhoeck and Ruprecht, Göttingen, 1975 | MR | Zbl

[11] Prawitz H., “Über Mittelwerte analytischer Funktionen”, Arkiv Mat. Astronomy Fysik, 20A:6 (1927–1928), 1–12 | Zbl

[12] Shimorin S., “A multiplier estimate of the Schwarzian derivative of univalent functions”, Int. Math. Res. Not., 2003, no. 30, 1623–1633 | DOI | MR | Zbl