Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2006_18_1_a7, author = {S. Shimorin}, title = {Branching points area theorems for univalent functions}, journal = {Algebra i analiz}, pages = {187--240}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2006_18_1_a7/} }
S. Shimorin. Branching points area theorems for univalent functions. Algebra i analiz, Tome 18 (2006) no. 1, pp. 187-240. http://geodesic.mathdoc.fr/item/AA_2006_18_1_a7/
[1] Abuzyarova N., Hedenmalm H., “Branch point area methods in conformal mapping”, J. Anal. Math., 99 (2006), 177–198 | DOI | MR | Zbl
[2] Bergman S., Schiffer M., “Kernel functions and conformal mapping”, Compositio Math., 8 (1951), 205–249 | MR | Zbl
[3] Bognár J., Indefinite inner product spaces, Ergeb. Math. Grenzgeb., 78, Springer-Verlag, New York–Heidelberg, 1974 | MR | Zbl
[4] Carleson L., “A representation formula for the Dirichlet integral”, Math. Z., 73 (1960), 190–196 | DOI | MR | Zbl
[5] Duren P. L., Univalent functions, Grundlehren Math. Wiss., 259, Springer-Verlag, New York, 1983 | MR | Zbl
[6] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, 2-e izd., Nauka, M., 1966 | MR
[7] Hedenmalm H., Shimorin S., “Weighted Bergman spaces and the integral means spectrum of conformal mappings”, Duke Math. J., 127 (2005), 341–393 | DOI | MR | Zbl
[8] Lebedev N. A., Printsip ploschadei v teorii odnolistnykh funktsii, Nauka, M., 1975 | MR | Zbl
[9] Nehari Z., “Inequalities for the coefficients of univalent functions”, Arch. Rational Mech. Anal., 34 (1969), 301–330 | DOI | MR | Zbl
[10] Pommerenke Ch., Univalent functions, With a chapter on quadratic differentials by Gerd Jensen, Studia Math./Math. Lehrbücher, XXV, Vandenhoeck and Ruprecht, Göttingen, 1975 | MR | Zbl
[11] Prawitz H., “Über Mittelwerte analytischer Funktionen”, Arkiv Mat. Astronomy Fysik, 20A:6 (1927–1928), 1–12 | Zbl
[12] Shimorin S., “A multiplier estimate of the Schwarzian derivative of univalent functions”, Int. Math. Res. Not., 2003, no. 30, 1623–1633 | DOI | MR | Zbl