Construction of spherical cubature formulas using lattices
Algebra i analiz, Tome 18 (2006) no. 1, pp. 162-186.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct cubature formulas on spheres supported by homothetic images of shells in some Euclidean lattices. Our analysis of these cubature formulas uses results from the theory of modular forms. Examples are worked out on $\mathbb S^{n-1}$ for $n=4$, 8, 12, 14, 16, 20, 23, and 24, and the sizes of the cubature formulas we obtain are compared with the lower bounds given by Linear Programming.
@article{AA_2006_18_1_a6,
     author = {P. de la Harpe and C. Pache and B. Venkov},
     title = {Construction of spherical cubature formulas using lattices},
     journal = {Algebra i analiz},
     pages = {162--186},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2006_18_1_a6/}
}
TY  - JOUR
AU  - P. de la Harpe
AU  - C. Pache
AU  - B. Venkov
TI  - Construction of spherical cubature formulas using lattices
JO  - Algebra i analiz
PY  - 2006
SP  - 162
EP  - 186
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2006_18_1_a6/
LA  - en
ID  - AA_2006_18_1_a6
ER  - 
%0 Journal Article
%A P. de la Harpe
%A C. Pache
%A B. Venkov
%T Construction of spherical cubature formulas using lattices
%J Algebra i analiz
%D 2006
%P 162-186
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2006_18_1_a6/
%G en
%F AA_2006_18_1_a6
P. de la Harpe; C. Pache; B. Venkov. Construction of spherical cubature formulas using lattices. Algebra i analiz, Tome 18 (2006) no. 1, pp. 162-186. http://geodesic.mathdoc.fr/item/AA_2006_18_1_a6/

[1] Andreev N. N., “Minimalnyi dizain 11-go poryadka na trekhmernoi sfere”, Mat. zametki, 67:4 (2000), 489–497 | MR | Zbl

[2] Bachoc Ch., Venkov B. B., “Modular forms, lattices and spherical designs”, Réseaux euclidiens, designs sphériques et formes modulaires, Monogr. Enseign. Math., 37, Enseign. Math., Geneva, 2001, 87–111 | MR | Zbl

[3] Bannai E., Damerell R., “Tight spherical designs. I”, J. Math. Soc. Japan, 31 (1979), 199–207 | DOI | MR | Zbl

[4] Bannai E., Damerell R., “Tight spherical designs. II”, J. London Math. Soc. (2), 21 (1980), 13–30 | DOI | MR | Zbl

[5] Bannai E., Munemasa A., Venkov B., “The nonexistence of certain tight spherical design”, Algebra i analiz, 16:4 (2004), 1–23 | MR | Zbl

[6] Bajnok B., “Chebyshev-type quadrature formulas on the sphere”, Proceedings of the Twenty-Second Southeastern Conference on Combinatorics, Graph Theory, and Computing (Baton Rouge, LA, 1991), Congr. Numer., 85, 1991, 214–218 | MR | Zbl

[7] Conway J. H., Sloane N. J. A., Sphere packings, lattices and groups, 3rd ed., Grundlehren Math. Wiss., 290, Springer-Verlag, New York, 1999 | MR | Zbl

[8] Delsarte P., Goethals J.-M., Seidel J. J., “Spherical codes and designs”, Geom. Dedicata, 6 (1977), 363–388 | MR | Zbl

[9] Dickson L. E., History of the theory of numbers. Vol. II: Diophantine analysis, Carnegie Inst., Washington, 1919 ; reprinted by Chelsea Publ. Co., New York, 1966 | Zbl | Zbl

[10] Ebeling W., Lattices and codes, a course partially based on lectures by F. Hirzenbruch, Friedr. Vieweg and Sohn, Braunschweig, 1994 ; 2nd revised ed., 2002 | MR | Zbl

[11] Goethals J.-M., Seidel J. J., “Spherical designs”, Relations Between Combinatorics and Other Parts of Mathematics (Proc. Sympos. Pure Math., Ohio State Univ., Columbus, Ohio, 1978), Proc. Sympos. Pure Math., 34, Amer. Math. Soc., Providence RI, 1979, 255–272 | MR

[12] Goethals J.-M., Seidel J. J., “Cubature formulas, polytopes, and spherical designs”, The Geometric Vein, the Coxeter Festschrift, Springer, New York–Berlin, 1981, 203–218 | MR

[13] Hardin R. H., Sloane N. J. A., “Expressing $(a^2+b^2+c^2+d^2)^3$ as a sum of 23 sixth powers”, J. Combin. Theory Ser. A, 68 (1994), 481–485 | DOI | MR | Zbl

[14] Hardin R. H., Sloane N. J. A., “McLaren's improved snub cube and other new spherical designs in three dimensions”, Discrete Comput. Geom., 15 (1996), 429–441 | DOI | MR | Zbl

[15] de la Harpe P., Pache C., “Spherical designs and finite group representations (some results of E. Bannai)”, European J. Combin., 25 (2004), 213–227 | DOI | MR | Zbl

[16] de la Harpe P., Pache C., “Cubature formulas, geometrical designs, reproducing kernels, and Markov operators”, Infinite Groups: Geometric, Combinatorial, and Dynamical Aspects, Progr. Math., 248, Birkhäuser, 2005, 219–268 | MR | Zbl

[17] Kuperberg G., Numerical cubature using error-correcting codes, arXiv:math.NA/0402047 | MR

[18] Kuperberg G., Numerical cubature from Archimedes' hat-box theorem, arXiv:math.NA/0405366 | MR

[19] Lehmer D. H., “The vanishing of Ramanujan's function $\tau(n)$”, Duke Math. J., 14 (1947), 429–433 | DOI | MR

[20] Martinet J. (ed.), Réseaux euclidiens, designs sphériques et formes modulaires. Autour des travaux de B. Venkov, Monogr. Enseign. Math., 37, Enseign. Math., Geneva, 2001 | MR

[21] Nikova S., Nikov V., “Improvement of the Delsarte bound for $\tau$-designs when it is not the best bound possible”, Des. Codes Cryptogr., 28:2 (2003), 201–222 | DOI | MR | Zbl

[22] Pache C., “Selfdual lattices viewed as spherical designs”, Internat. J. Algebra Comput., 15:5-6 (2005), 1085–1127 | DOI | MR | Zbl

[23] Quebbemann H.-G., “Modular lattices in Euclidean spaces”, J. Number Theory, 54:2 (1995), 190–202 | DOI | MR | Zbl

[24] Rankin R. A., Modular forms and functions, Cambridge Univ. Press, Cambridge etc., 1977 | MR | Zbl

[25] Salikhov G. N., “Kubaturnye formuly dlya gipersfery, invariantnye otnositelno gruppy pravilnogo 600-grannika”, Dokl. AN SSSR, 223:5 (1975), 1075–1078 | MR | Zbl

[26] J.-P. Serre, “Sur la lacunarité des puissances de $\eta$”, Glasgow Math. J., 27 (1985), 203–221 ; = ØE uvres, Collected Papers IV, 1985-1998, Springer-Verlag, Berlin, 2000, 66–84, 640 | DOI | MR | Zbl | MR

[27] Seymour P. D., Zaslavsky T., “Averaging sets: a generalization of mean values and spherical designs”, Adv. in Math., 52 (1984), 213–240 | DOI | MR | Zbl

[28] Smith L., Polynomial invariants of finite groups, Res. Notes Math., 6, A. K. Peters, Wellesley, MA, 1995 | MR | Zbl

[29] Sobolev S. L., “O kubaturnykh formulakh na sfere, invariantnykh pri preobrazovaniyakh konechnykh grupp vraschenii”, Dokl. AN SSSR, 146:2 (1962), 310–313 | MR | Zbl

[30] Sobolev S. L., Vaskevich V. L., Kubaturnye formuly, Nauka, SO, Novosibirsk, 1996

[31] Venkov B. B., “Chetnye unimodulyarnye ekstremalnye reshetki”, Tr. Mat. in-ta AN SSSR, 165, 1984, 43–48 | MR | Zbl

[32] Venkov B. B. (notes by J. Martinet), “Réseaux et designs sphériques”, Réseaux euclidiens, designs sphériques et formes modulaires, Monogr. Enseign. Math., 37, Enseign. Math., Geneva, 2001, 10–86 | MR | Zbl

[33] Vilenkin N. Ya., Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1965 | MR | Zbl

[34] Yudin V. A., “Nizhnie otsenki dlya sfericheskikh dizainov”, Izv. RAN. Ser. mat., 61:3 (1997), 213–223 | MR | Zbl