Products of Toeplitz operators on the Bergman spaces~$A_\alpha^2$
Algebra i analiz, Tome 18 (2006) no. 1, pp. 144-161.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a sufficient and a necessary condition for the product of Toeplitz operators $T^\alpha_fT^\alpha_{\bar g}$, with $f$$g$ analytic, to be bounded on the weighted Bergman space $L^2_a(\mathbb D,(1-|z|^2)^\alpha dA)$. We also show that the only compact product of weighted Toeplitz operators is the trivial one.
Keywords: weighted Bergman spaces, Toeplitz operators, reproducing kernel thesis.
@article{AA_2006_18_1_a5,
     author = {S. Pott and E. Strouse},
     title = {Products of {Toeplitz} operators on the {Bergman} spaces~$A_\alpha^2$},
     journal = {Algebra i analiz},
     pages = {144--161},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2006_18_1_a5/}
}
TY  - JOUR
AU  - S. Pott
AU  - E. Strouse
TI  - Products of Toeplitz operators on the Bergman spaces~$A_\alpha^2$
JO  - Algebra i analiz
PY  - 2006
SP  - 144
EP  - 161
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2006_18_1_a5/
LA  - en
ID  - AA_2006_18_1_a5
ER  - 
%0 Journal Article
%A S. Pott
%A E. Strouse
%T Products of Toeplitz operators on the Bergman spaces~$A_\alpha^2$
%J Algebra i analiz
%D 2006
%P 144-161
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2006_18_1_a5/
%G en
%F AA_2006_18_1_a5
S. Pott; E. Strouse. Products of Toeplitz operators on the Bergman spaces~$A_\alpha^2$. Algebra i analiz, Tome 18 (2006) no. 1, pp. 144-161. http://geodesic.mathdoc.fr/item/AA_2006_18_1_a5/

[HaNik] Havin V. P., Nikolski N. K., “Stanislav Aleksandrovich Vinogradov, his life and mathematics”, Complex Analysis, Operators, and Related Topics, Oper. Theory Adv. Appl., 113, Birkhäuser, Basel, 2000, 1–18 | MR | Zbl

[HKZ] Hedenmalm H., Korenblum B., Zhu K., Theory of Bergman spaces, Grad. Texts in Math., 199, Springer-Verlag, New York, 2000 | MR | Zbl

[Lu] Luecking D., “Forward and reverse Carleson inequalities for functions in Bergman spaces and their derivatives”, Amer. J. Math., 107 (1985), 85–111 | DOI | MR | Zbl

[LP] Lusin N., Priwaloff J., “Sur l'unicité et la multiplicité des fonctions analytiques”, Ann. Sci. École Norm. Sup. (3), 42:3 (1925), 143–191 | MR | Zbl

[M] Mathworld Website http://mathworld.wolfram.com/BetaFunction.html

[N1] Nazarov F., A counterexample to Sarason's conjecture, Preprint, www.math.msu.edu/~fedja/pepr.html

[N2] Nazarov F., Private communication

[S] Sarason D., “Products of Toeplitz operators”, Linear and Complex Analysis, Problem Book 3, Part I, Lecture Notes in Math., 1573, eds. V. P. Havin and N. K. Nikolski, Springer-Verlag, Berlin, 1994 | MR

[Sm] Smith M., Preprint, 2004

[StZh1] Stroethoff K., Zheng D., “Products of Hankel and Toeplitz operators on the Bergman space”, J. Funct. Anal., 169 (1999), 289–313 | DOI | MR | Zbl

[StZh2] Stroethoff K., Zheng D., “Invertible Toeplitz products”, J. Funct. Anal., 195:1 (2002), 48–70 | DOI | MR | Zbl

[TVZh] Treil S., Volberg A., Zheng D., “Hilbert transform, Toeplitz operators and Hankel operators, and invariant $A\sb\infty$ weights”, Rev. Mat. Iberoamericana, 13:2 (1997), 319–360 | MR | Zbl

[VMu] Müller V., Vasilescu F. H., “Standard models for some commuting multioperators”, Proc. Amer. Math. Soc., 117:4 (1993), 979–989 | DOI | MR | Zbl

[Zh] Zheng D., “The distribution function inequality and products of Toeplitz operators and Hankel operators”, J. Funct. Anal., 138:2 (1996), 477–501 | DOI | MR | Zbl