Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2006_18_1_a5, author = {S. Pott and E. Strouse}, title = {Products of {Toeplitz} operators on the {Bergman} spaces~$A_\alpha^2$}, journal = {Algebra i analiz}, pages = {144--161}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2006_18_1_a5/} }
S. Pott; E. Strouse. Products of Toeplitz operators on the Bergman spaces~$A_\alpha^2$. Algebra i analiz, Tome 18 (2006) no. 1, pp. 144-161. http://geodesic.mathdoc.fr/item/AA_2006_18_1_a5/
[HaNik] Havin V. P., Nikolski N. K., “Stanislav Aleksandrovich Vinogradov, his life and mathematics”, Complex Analysis, Operators, and Related Topics, Oper. Theory Adv. Appl., 113, Birkhäuser, Basel, 2000, 1–18 | MR | Zbl
[HKZ] Hedenmalm H., Korenblum B., Zhu K., Theory of Bergman spaces, Grad. Texts in Math., 199, Springer-Verlag, New York, 2000 | MR | Zbl
[Lu] Luecking D., “Forward and reverse Carleson inequalities for functions in Bergman spaces and their derivatives”, Amer. J. Math., 107 (1985), 85–111 | DOI | MR | Zbl
[LP] Lusin N., Priwaloff J., “Sur l'unicité et la multiplicité des fonctions analytiques”, Ann. Sci. École Norm. Sup. (3), 42:3 (1925), 143–191 | MR | Zbl
[M] Mathworld Website http://mathworld.wolfram.com/BetaFunction.html
[N1] Nazarov F., A counterexample to Sarason's conjecture, Preprint, www.math.msu.edu/~fedja/pepr.html
[N2] Nazarov F., Private communication
[S] Sarason D., “Products of Toeplitz operators”, Linear and Complex Analysis, Problem Book 3, Part I, Lecture Notes in Math., 1573, eds. V. P. Havin and N. K. Nikolski, Springer-Verlag, Berlin, 1994 | MR
[Sm] Smith M., Preprint, 2004
[StZh1] Stroethoff K., Zheng D., “Products of Hankel and Toeplitz operators on the Bergman space”, J. Funct. Anal., 169 (1999), 289–313 | DOI | MR | Zbl
[StZh2] Stroethoff K., Zheng D., “Invertible Toeplitz products”, J. Funct. Anal., 195:1 (2002), 48–70 | DOI | MR | Zbl
[TVZh] Treil S., Volberg A., Zheng D., “Hilbert transform, Toeplitz operators and Hankel operators, and invariant $A\sb\infty$ weights”, Rev. Mat. Iberoamericana, 13:2 (1997), 319–360 | MR | Zbl
[VMu] Müller V., Vasilescu F. H., “Standard models for some commuting multioperators”, Proc. Amer. Math. Soc., 117:4 (1993), 979–989 | DOI | MR | Zbl
[Zh] Zheng D., “The distribution function inequality and products of Toeplitz operators and Hankel operators”, J. Funct. Anal., 138:2 (1996), 477–501 | DOI | MR | Zbl