Weighted Sobolev-type embedding theorems for functions with symmetries
Algebra i analiz, Tome 18 (2006) no. 1, pp. 108-123 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is well known that Sobolev embeddings can be refined in the presence of symmetries. Hebey and Vaugon (1997) studied this phenomena in the context of an arbitrary Riemannian manifold $\mathcal M$ and a compact group of isometries $G$. They showed that the limit Sobolev exponent increases if there are no points in $\mathcal M$ with discrete orbits under the action of $G$. In the paper, the situation where $\mathcal M$ contains points with discrete orbits is considered. It is shown that the limit Sobolev exponent for $W_p^1(\mathcal M)$ increases in the case of embeddings into weighted spaces $L_q(\mathcal M,w)$ instead of the usual $L_q$ spaces, where the weight function $w(x)$ is a positive power of the distance from $x$ to the set of points with discrete orbits. Also, embeddings of $W_p^1(\mathcal M)$ into weighted Hölder and Orlicz spaces are treated.
@article{AA_2006_18_1_a3,
     author = {S. V. Ivanov and A. I. Nazarov},
     title = {Weighted {Sobolev-type} embedding theorems for functions with symmetries},
     journal = {Algebra i analiz},
     pages = {108--123},
     year = {2006},
     volume = {18},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2006_18_1_a3/}
}
TY  - JOUR
AU  - S. V. Ivanov
AU  - A. I. Nazarov
TI  - Weighted Sobolev-type embedding theorems for functions with symmetries
JO  - Algebra i analiz
PY  - 2006
SP  - 108
EP  - 123
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AA_2006_18_1_a3/
LA  - ru
ID  - AA_2006_18_1_a3
ER  - 
%0 Journal Article
%A S. V. Ivanov
%A A. I. Nazarov
%T Weighted Sobolev-type embedding theorems for functions with symmetries
%J Algebra i analiz
%D 2006
%P 108-123
%V 18
%N 1
%U http://geodesic.mathdoc.fr/item/AA_2006_18_1_a3/
%G ru
%F AA_2006_18_1_a3
S. V. Ivanov; A. I. Nazarov. Weighted Sobolev-type embedding theorems for functions with symmetries. Algebra i analiz, Tome 18 (2006) no. 1, pp. 108-123. http://geodesic.mathdoc.fr/item/AA_2006_18_1_a3/

[1] Strauss W. A., “Existence of solitary waves in higher dimensions”, Comm. Math. Phys., 55 (1977), 149–162 | DOI | MR | Zbl

[2] Lions P.-L., “The concentration-compactness principle in the calculus of variations. The limit case. II, I”, Rev. Mat. Iberoamericana, 1 (1985), 45–121 ; 145–201 | MR | Zbl | Zbl

[3] Ding W., “On a conformally invariant elliptic equation on $\mathbb R^n$”, Comm. Math. Phys., 107 (1986), 331–335 | DOI | MR | Zbl

[4] Nazarov A. I., “O resheniyakh zadachi Dirikhle dlya uravneniya, vklyuchayuschego $p$-laplasian, v sfericheskom sloe”, Tr. S.-Peterburg. mat. o-va, 10, 2004, 33–62

[5] Bartsch T., Schneider M., Weth T., “Multiple solutions of a critical polyharmonic equation”, J. Reine Angew. Math., 571 (2004), 131–143 | MR | Zbl

[6] Scheglova A. P., “Mnozhestvennost reshenii odnoi kraevoi zadachi s nelineinym usloviem Neimana”, Probl. mat. anal., 30, S.-Peterburg. un-t, SPb., 2005, 121–144 | MR | Zbl

[7] Hebey E., Vaugon M., “Sobolev spaces in the presence of symmetries”, J. Math. Pures Appl. (9), 76 (1997), 859–881 | MR | Zbl

[8] Nazarov A. I., “O simmetrichnosti ekstremali v vesovoi teoreme vlozheniya”, Probl. mat. anal., 23, S.-Peterburg. un-t, SPb., 2001, 50–75 | Zbl

[9] Gilbarg D., Trudinger N. S., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl

[10] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, 3-e izd., Nauka, M., 1984 | MR | Zbl

[11] Triebel H., “Approximation numbers and entropy numbers of embeddings of fractional Besov – Sobolev spaces in Orlicz spaces”, Proc. London Math. Soc. (3), 66:3 (1993), 589–618 | DOI | MR | Zbl

[12] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, t. 1, Nauka, M., 1981