Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2005_17_6_a3, author = {L. A. Nazarova and A. V. Roiter and M. N. Smirnova}, title = {Antimonotone and $P$-exact quadratic forms, and representations of partially ordered sets}, journal = {Algebra i analiz}, pages = {161--183}, publisher = {mathdoc}, volume = {17}, number = {6}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2005_17_6_a3/} }
TY - JOUR AU - L. A. Nazarova AU - A. V. Roiter AU - M. N. Smirnova TI - Antimonotone and $P$-exact quadratic forms, and representations of partially ordered sets JO - Algebra i analiz PY - 2005 SP - 161 EP - 183 VL - 17 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2005_17_6_a3/ LA - ru ID - AA_2005_17_6_a3 ER -
%0 Journal Article %A L. A. Nazarova %A A. V. Roiter %A M. N. Smirnova %T Antimonotone and $P$-exact quadratic forms, and representations of partially ordered sets %J Algebra i analiz %D 2005 %P 161-183 %V 17 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/AA_2005_17_6_a3/ %G ru %F AA_2005_17_6_a3
L. A. Nazarova; A. V. Roiter; M. N. Smirnova. Antimonotone and $P$-exact quadratic forms, and representations of partially ordered sets. Algebra i analiz, Tome 17 (2005) no. 6, pp. 161-183. http://geodesic.mathdoc.fr/item/AA_2005_17_6_a3/
[1] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, T. 1, Gostekhizdat, M.-L., 1947, 690 pp.
[2] Roiter A. V., “The norm of a relation”, Representation Theory. I. Finite Dimensional Algebras (Ottawa, 1984), Lecture Notes in Math., 1177, Springer-Verlag, Berlin, 1986, 269–271 | MR
[3] Nazarova L. A., Roiter A. V., “Norma otnosheniya, razdelyayuschie funktsii i predstavleniya markirovannykh kolchanov”, Ukr. mat. zh., 54:6 (2002), 808–840 | MR | Zbl
[4] Zeldich M. V., “Pro kharakteristiki formi chastkovo vporyadkovanikh mnozhim z odnozv'yaznim grafom Khasse”, Bicn. Kiïv. un-tu. Ser. fiz.-mat. nauk, 2001, no. 4, 36–44 | MR
[5] Zeldich M. V., “Pro $p$-tochni chastkovo vporyadkovani mnozhini”, Bicn. Kiïv. un-tu. Ser. fiz.-mat. nauk, 2001, no. 4, 45–51 | MR
[6] Sapelkin A. I., “$P$-tochnye chastichno uporyadochennye mnozhestva”, Ukr. mat. zh., 54:10 (2002), 1381–1395 | MR | Zbl
[7] Zeldich M. V., O kharakteristicheskikh i kratno tranzitivnykh formakh chastichno uporyadochennykh mnozhestv. O $P$-tochnykh chastichno uporyadochennykh mnozhestvakh, Preprint, Kiev. nats. un-t im. Tarasa Shevchenka, Kiev, 2002, 64 pp. | MR
[8] Kleiner M. M., “Chastichno uporyadochennye mnozhestva konechnogo tipa”, Zap. nauch. semin. LOMI, 28, 1972, 32–41 | MR | Zbl
[9] Ringel C. M., Tame algebras and integral quadratic forms, Lecture Notes in Math., 1099, Springer-Verlag, Berlin, 1984, 376 pp. | MR | Zbl
[10] Nazarova L. A., “Chastichno uporyadochennye mnozhestva beskonechnogo tipa”, Izv. AN SSSR. Ser. mat., 39:5 (1975), 963–991 | MR | Zbl
[11] Zavadskii A. G., Nazarova L. A., “Chastichno uporyadochennye mnozhestva ruchnogo tipa”, Matrichnye zadachi, In-t matematiki AN USSR, Kiev, 1977, 122–143 | MR | Zbl
[12] Gabriel P., Roǐter A. V., “Representations of finite-dimensional algebras”, Algebra, VIII, Encyclopaedia Math. Sci., 73, Springer-Verlag, Berlin, 1992, 1–177 | MR
[13] Kruglyak S. A., Roiter A. V., “Lokalno-skalyarnye predstavleniya grafov v kategorii gilbertovykh prostranstv”, Funkts. anal. i ego pril., 39:2 (2005), 13–30 | MR | Zbl
[14] Redchuk I. K., Roiter A. V., “Singulyarnye lokalno-skalyarnye predstavleniya v gilbertovykh prostranstvakh i razdelyayuschie funktsii”, Ukr. mat. zh., 56:6 (2004), 796–809 | MR | Zbl