Antimonotone and $P$-exact quadratic forms, and representations of partially ordered sets
Algebra i analiz, Tome 17 (2005) no. 6, pp. 161-183.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2005_17_6_a3,
     author = {L. A. Nazarova and A. V. Roiter and M. N. Smirnova},
     title = {Antimonotone and $P$-exact quadratic forms, and representations of partially ordered sets},
     journal = {Algebra i analiz},
     pages = {161--183},
     publisher = {mathdoc},
     volume = {17},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2005_17_6_a3/}
}
TY  - JOUR
AU  - L. A. Nazarova
AU  - A. V. Roiter
AU  - M. N. Smirnova
TI  - Antimonotone and $P$-exact quadratic forms, and representations of partially ordered sets
JO  - Algebra i analiz
PY  - 2005
SP  - 161
EP  - 183
VL  - 17
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2005_17_6_a3/
LA  - ru
ID  - AA_2005_17_6_a3
ER  - 
%0 Journal Article
%A L. A. Nazarova
%A A. V. Roiter
%A M. N. Smirnova
%T Antimonotone and $P$-exact quadratic forms, and representations of partially ordered sets
%J Algebra i analiz
%D 2005
%P 161-183
%V 17
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2005_17_6_a3/
%G ru
%F AA_2005_17_6_a3
L. A. Nazarova; A. V. Roiter; M. N. Smirnova. Antimonotone and $P$-exact quadratic forms, and representations of partially ordered sets. Algebra i analiz, Tome 17 (2005) no. 6, pp. 161-183. http://geodesic.mathdoc.fr/item/AA_2005_17_6_a3/

[1] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, T. 1, Gostekhizdat, M.-L., 1947, 690 pp.

[2] Roiter A. V., “The norm of a relation”, Representation Theory. I. Finite Dimensional Algebras (Ottawa, 1984), Lecture Notes in Math., 1177, Springer-Verlag, Berlin, 1986, 269–271 | MR

[3] Nazarova L. A., Roiter A. V., “Norma otnosheniya, razdelyayuschie funktsii i predstavleniya markirovannykh kolchanov”, Ukr. mat. zh., 54:6 (2002), 808–840 | MR | Zbl

[4] Zeldich M. V., “Pro kharakteristiki formi chastkovo vporyadkovanikh mnozhim z odnozv'yaznim grafom Khasse”, Bicn. Kiïv. un-tu. Ser. fiz.-mat. nauk, 2001, no. 4, 36–44 | MR

[5] Zeldich M. V., “Pro $p$-tochni chastkovo vporyadkovani mnozhini”, Bicn. Kiïv. un-tu. Ser. fiz.-mat. nauk, 2001, no. 4, 45–51 | MR

[6] Sapelkin A. I., “$P$-tochnye chastichno uporyadochennye mnozhestva”, Ukr. mat. zh., 54:10 (2002), 1381–1395 | MR | Zbl

[7] Zeldich M. V., O kharakteristicheskikh i kratno tranzitivnykh formakh chastichno uporyadochennykh mnozhestv. O $P$-tochnykh chastichno uporyadochennykh mnozhestvakh, Preprint, Kiev. nats. un-t im. Tarasa Shevchenka, Kiev, 2002, 64 pp. | MR

[8] Kleiner M. M., “Chastichno uporyadochennye mnozhestva konechnogo tipa”, Zap. nauch. semin. LOMI, 28, 1972, 32–41 | MR | Zbl

[9] Ringel C. M., Tame algebras and integral quadratic forms, Lecture Notes in Math., 1099, Springer-Verlag, Berlin, 1984, 376 pp. | MR | Zbl

[10] Nazarova L. A., “Chastichno uporyadochennye mnozhestva beskonechnogo tipa”, Izv. AN SSSR. Ser. mat., 39:5 (1975), 963–991 | MR | Zbl

[11] Zavadskii A. G., Nazarova L. A., “Chastichno uporyadochennye mnozhestva ruchnogo tipa”, Matrichnye zadachi, In-t matematiki AN USSR, Kiev, 1977, 122–143 | MR | Zbl

[12] Gabriel P., Roǐter A. V., “Representations of finite-dimensional algebras”, Algebra, VIII, Encyclopaedia Math. Sci., 73, Springer-Verlag, Berlin, 1992, 1–177 | MR

[13] Kruglyak S. A., Roiter A. V., “Lokalno-skalyarnye predstavleniya grafov v kategorii gilbertovykh prostranstv”, Funkts. anal. i ego pril., 39:2 (2005), 13–30 | MR | Zbl

[14] Redchuk I. K., Roiter A. V., “Singulyarnye lokalno-skalyarnye predstavleniya v gilbertovykh prostranstvakh i razdelyayuschie funktsii”, Ukr. mat. zh., 56:6 (2004), 796–809 | MR | Zbl