Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2005_17_6_a2, author = {S. A. Nazarov and A. S. Slutskij}, title = {Averaging of an elliptic system under condensing perforation of a~domain}, journal = {Algebra i analiz}, pages = {125--160}, publisher = {mathdoc}, volume = {17}, number = {6}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2005_17_6_a2/} }
S. A. Nazarov; A. S. Slutskij. Averaging of an elliptic system under condensing perforation of a~domain. Algebra i analiz, Tome 17 (2005) no. 6, pp. 125-160. http://geodesic.mathdoc.fr/item/AA_2005_17_6_a2/
[1] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[2] Nečas J., Les méthods direct en théorie des équations elliptiques, Masson, Paris, 1967
[3] Nazarov S. A., “Polinomialnoe svoistvo samosopryazhennykh ellipticheskikh kraevykh zadach i algebraicheskoe opisanie ikh atributov”, Uspekhi mat. nauk, 54:5 (1999), 77–142 | MR | Zbl
[4] Nazarov S. A., “Samosopryazhennye ellipticheskie kraevye zadachi. Polinomialnoe svoistvo i formalno polozhitelnye operatory”, Probl. mat. anal., 16, SPb-GU, SPb., 1997, 167–192
[5] Marchenko V. A., Khruslov E. Ya., Kraevye zadachi v oblastyakh s melkozernistoi granitsei, Nauk. dumka, Kiev, 1974 | MR
[6] Bakhvalov N. S., Panasenko G. A., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl
[7] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR
[8] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, MGU, M., 1990
[9] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl
[10] Cioranescu D., Saint Jean Paulin J., Homogenization of reticulated structures, Appl. Math. Sci., 136, Springer-Verlag, New York, 1999 | MR | Zbl
[11] Kozlov S. M., “Harmonization and homogenization on fractals”, Comm. Math. Phys., 153 (1993), 339–357 | DOI | MR | Zbl
[12] Zhikov V. V., “Svyaznost i usrednenie. Primery fraktalnoi provodimosti”, Mat. sb., 187:8 (1996), 3–40 | MR | Zbl
[13] Nazarov S. A., “Obschaya skhema osredneniya samosopryazhennykh ellipticheskikh sistem v mnogomernykh oblastyakh, v tom chisle tonkikh”, Algebra i analiz, 7:5 (1995), 1–92 | Zbl
[14] Nazarov S. A., Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, T. 1, Nauchnaya kniga, Novosibirsk, 2002 | Zbl
[15] Nazarov S. A., Slutskii A. S., “Razvetvlyayuschayasya periodichnost: osrednenie zadachi Dirikhle dlya ellipticheskoi sistemy”, Dokl. RAN, 397:6 (2004), 743–747 | MR
[16] Nazarov S. A., “Ellipticheskie kraevye zadachi s periodicheskimi koeffitsientami v tsilindre”, Izv. AN SSSR. Ser. mat., 45:1 (1981), 101–112 | MR | Zbl
[17] Kuchment P. A., “Teoriya Floke dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, Uspekhi mat. nauk, 37:4 (1982), 3–52 | MR | Zbl
[18] Nazarov S. A., “Nesamosopryazhennye ellipticheskie zadachi s polinomialnym svoistvom v oblastyakh, imeyuschikh tsilindricheskie vykhody na beskonechnost”, Zap. nauch. semin. POMI, 249, 1997, 212–230 | Zbl
[19] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno-gladkoi granitsei, Nauka, M., 1991