A~mathematical model for a~noninvertible quantum graph
Algebra i analiz, Tome 17 (2005) no. 5, pp. 190-231.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2005_17_5_a6,
     author = {M. Z. Solomyak},
     title = {A~mathematical model for a~noninvertible quantum graph},
     journal = {Algebra i analiz},
     pages = {190--231},
     publisher = {mathdoc},
     volume = {17},
     number = {5},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2005_17_5_a6/}
}
TY  - JOUR
AU  - M. Z. Solomyak
TI  - A~mathematical model for a~noninvertible quantum graph
JO  - Algebra i analiz
PY  - 2005
SP  - 190
EP  - 231
VL  - 17
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2005_17_5_a6/
LA  - ru
ID  - AA_2005_17_5_a6
ER  - 
%0 Journal Article
%A M. Z. Solomyak
%T A~mathematical model for a~noninvertible quantum graph
%J Algebra i analiz
%D 2005
%P 190-231
%V 17
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2005_17_5_a6/
%G ru
%F AA_2005_17_5_a6
M. Z. Solomyak. A~mathematical model for a~noninvertible quantum graph. Algebra i analiz, Tome 17 (2005) no. 5, pp. 190-231. http://geodesic.mathdoc.fr/item/AA_2005_17_5_a6/

[1] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, LGU, L., 1980 | MR

[2] Birman M. Sh., Entina S. B., “Statsionarnyi podkhod v abstraktnoi teorii rasseyaniya”, Izv. AN SSSR. Ser. mat., 31:2 (1967), 401–430 | MR | Zbl

[3] Gilbert D. J., Pearson D. B., “On subordinacy and analysis of the spectrum of onedimensional Schrödinger operators”, J. Math. Anal. Appl., 128:1 (1987), 30–56 | DOI | MR | Zbl

[4] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[5] Elaydi S. N., An introduction to difference equations, Springer-Verlag, New York, 1999 | MR | Zbl

[6] Evans W. D., Solomyak M., “Smilansky's model of irreversible quantum graphs. I. The absolutely continuous spectrum”, J. Phys. A, 38 (2005), 4611–4627 | DOI | MR | Zbl

[7] Evans W. D., Solomyak M., “Smilansky's model of irreversible quantum graphs. II. The point spectrum”, J. Phys. A, 38 (2005), 7661–7675 | DOI | MR | Zbl

[8] Khan S., Pearson D. B., “Subordinacy and spectral theory for infinite matrices”, Helv. Phys. Acta, 65:4 (1992), 505–527 | MR

[9] Kuchment P., “Graph models for waves in thin structures”, Waves Random Media, 12:4 (2002), R1–R24 | DOI | MR | Zbl

[10] Naboko S. H., “Ob usloviyakh suschestvovaniya volnovykh operatorov v nesamosopryazhennom sluchae”, Rasprostranenie voln. Teoriya rasseyaniya, Probl. mat. fiz., 12, LGU, L., 1987, 132–155 | MR

[11] Naboko S. N., “Uniqueness theorems for operator-valued functions with positive imaginary part, and the singular spectrum in the selfadjoint Friedrichs model”, Ark. Mat., 25 (1987), 115–140 | DOI | MR | Zbl

[12] Naboko S. N., Solomyak M., On the absolutely continuous spectrum of a family of operators appearing in the theory of irreversible quantum systems, submitted Proc. London Math. Soc.

[13] Smilansky U., “Irreversible quantum graphs”, Waves Random Media, 14 (2004), S143–S153 | DOI | MR | Zbl

[14] Solomyak M., “On a differential operator appearing in the theory of irreversible quantum graphs”, Waves Random Media, 14 (2004), S173–S185 | DOI | MR | Zbl

[15] Solomyak M. Z., “O diskretnom spektre semeistva differentsialnykh operatorov”, Funkts. anal. i ego pril., 38:3 (2004), 70–78 | MR

[16] Yafaev D. R., Matematicheskaya teoriya rasseyaniya. Obschaya teoriya, SPbGU, SPb., 1994 | MR