Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2005_17_5_a6, author = {M. Z. Solomyak}, title = {A~mathematical model for a~noninvertible quantum graph}, journal = {Algebra i analiz}, pages = {190--231}, publisher = {mathdoc}, volume = {17}, number = {5}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2005_17_5_a6/} }
M. Z. Solomyak. A~mathematical model for a~noninvertible quantum graph. Algebra i analiz, Tome 17 (2005) no. 5, pp. 190-231. http://geodesic.mathdoc.fr/item/AA_2005_17_5_a6/
[1] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, LGU, L., 1980 | MR
[2] Birman M. Sh., Entina S. B., “Statsionarnyi podkhod v abstraktnoi teorii rasseyaniya”, Izv. AN SSSR. Ser. mat., 31:2 (1967), 401–430 | MR | Zbl
[3] Gilbert D. J., Pearson D. B., “On subordinacy and analysis of the spectrum of onedimensional Schrödinger operators”, J. Math. Anal. Appl., 128:1 (1987), 30–56 | DOI | MR | Zbl
[4] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR
[5] Elaydi S. N., An introduction to difference equations, Springer-Verlag, New York, 1999 | MR | Zbl
[6] Evans W. D., Solomyak M., “Smilansky's model of irreversible quantum graphs. I. The absolutely continuous spectrum”, J. Phys. A, 38 (2005), 4611–4627 | DOI | MR | Zbl
[7] Evans W. D., Solomyak M., “Smilansky's model of irreversible quantum graphs. II. The point spectrum”, J. Phys. A, 38 (2005), 7661–7675 | DOI | MR | Zbl
[8] Khan S., Pearson D. B., “Subordinacy and spectral theory for infinite matrices”, Helv. Phys. Acta, 65:4 (1992), 505–527 | MR
[9] Kuchment P., “Graph models for waves in thin structures”, Waves Random Media, 12:4 (2002), R1–R24 | DOI | MR | Zbl
[10] Naboko S. H., “Ob usloviyakh suschestvovaniya volnovykh operatorov v nesamosopryazhennom sluchae”, Rasprostranenie voln. Teoriya rasseyaniya, Probl. mat. fiz., 12, LGU, L., 1987, 132–155 | MR
[11] Naboko S. N., “Uniqueness theorems for operator-valued functions with positive imaginary part, and the singular spectrum in the selfadjoint Friedrichs model”, Ark. Mat., 25 (1987), 115–140 | DOI | MR | Zbl
[12] Naboko S. N., Solomyak M., On the absolutely continuous spectrum of a family of operators appearing in the theory of irreversible quantum systems, submitted Proc. London Math. Soc.
[13] Smilansky U., “Irreversible quantum graphs”, Waves Random Media, 14 (2004), S143–S153 | DOI | MR | Zbl
[14] Solomyak M., “On a differential operator appearing in the theory of irreversible quantum graphs”, Waves Random Media, 14 (2004), S173–S185 | DOI | MR | Zbl
[15] Solomyak M. Z., “O diskretnom spektre semeistva differentsialnykh operatorov”, Funkts. anal. i ego pril., 38:3 (2004), 70–78 | MR
[16] Yafaev D. R., Matematicheskaya teoriya rasseyaniya. Obschaya teoriya, SPbGU, SPb., 1994 | MR