Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2005_17_5_a4, author = {Yu. G. Safarov}, title = {A~Birghof-type theorem for a~family of probability spaces}, journal = {Algebra i analiz}, pages = {141--163}, publisher = {mathdoc}, volume = {17}, number = {5}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2005_17_5_a4/} }
Yu. G. Safarov. A~Birghof-type theorem for a~family of probability spaces. Algebra i analiz, Tome 17 (2005) no. 5, pp. 141-163. http://geodesic.mathdoc.fr/item/AA_2005_17_5_a4/
[An] Ando T., “Majorization, doubly stochastic matrices, and comparison of eigenvalues”, Linear Algebra Appl., 118 (1989), 163–248 | DOI | MR | Zbl
[Bil] Birkhoff G., “Three observations on linear algebra”, Univ. Nac. Tucumán. Revista A, 5 (1946), 147–151 (Spanish) | MR | Zbl
[Bi2] Birkhoff G., Lattice theory, rev. ed., Amer. Math. Soc. Colloq. Publ., 25, Amer. Math. Soc., New York, 1948 | MR | Zbl
[BR] Bapat R. B., Raghavan T. E. S., Nonnegative matrices and applications, Encyclopedia Math. Appl., 64, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl
[BS] Brown J. R., Shiflett R. C., “On extreme doubly stochastic measures”, Michigan Math. J., 17 (1970), 249–254 | DOI | MR | Zbl
[CLMST] Caron R. M., Li X., Mikusiński P., Sherwood H., Taylor M. D., “Nonsquare “doubly stochastic” matrices”, Distributions with Fixed Marginals and Related Topics (Seattle, WA, 1993), IMS Lecture Notes Monogr. Ser., 28, Inst. Math. Statist., Hayward, CA, 1996, 65–75 | MR
[Do] Douglas R. G., “On extremal measures and subspace density”, Michigan Math. J., 11 (1964), 243–246 | DOI | MR | Zbl
[Fe] Feldman D., “Doubly stochastic measures: three vignettes”, Distributions with Fixed Marginals and Related Topics (Seattle, WA, 1993), IMS Lecture Notes Monogr. Ser., 28, Inst. Math. Statist., Hayward, CA, 1996, 84–96 | MR
[Gr] Grzaslewicz R., “On extreme infinite doubly stochastic matrices”, Illinois J. Math., 31 (1987), 529–543 | MR | Zbl
[Ho] Hoffman A. J., “A special class of doubly stochastic matrices”, Aequationes Math., 2 (1969), 319–326 | DOI | MR | Zbl
[Is] Isbell J. R., “Birkhoff's problem 111”, Proc. Amer. Math. Soc., 6 (1955), 217–218 | DOI | MR | Zbl
[K] Köthe G., Topological vector spaces, I, Grundlehren Math. Wiss., 159, Springer-Verlag New York, Inc., New York, 1969 | MR
[Ka] Katz M., “On the extreme points of a certain convex polytope”, J. Combin. Theory, 8 (1970), 417–423 | DOI | MR | Zbl
[Ke] Kendall D. G., “On infinite doubly-stochastic matrices and Birkhoff's problem”, J. London Math. Soc., 35 (1960), 81–84 | DOI | MR | Zbl
[KST] Kamiński A., Sherwood H., Taylor M. D., “Doubly stochastic measures with mass on the graphs of two functions”, Real Anal. Exchange, 28:1 (1987/88), 253–257 | MR
[Le] Letac G., “Represéntation des mesures de probabilité sur le produit de deux espaces dénombrables, de marges données”, Illinois J. Math., 10 (1966), 497–507 | MR | Zbl
[Li] Lindenstrauss J., “A remark on extreme doubly stochastic measures”, Amer. Math. Monthly, 72 (1965), 379–382 | DOI | MR | Zbl
[LLL] Lewandowski J. L., Liu C. L., Liu J. W.-S., “An algorithmic proof of a generalization of the Birkhoff-von Neumann theorem”, J. Algorithms, 7:3 (1986), 323–330 | DOI | MR | Zbl
[LMST] Li X., Mikusiński P., Sherwood H., Taylor M. D., “In quest of Birkhoff's theorem in higher dimensions”, Distributions with Fixed Marginals and Related Topics (Seattle, WA, 1993), IMS Lecture Notes Monogr. Ser., 28, Inst. Math. Statist., Hayward, CA, 1996, 187–197 | MR
[Mu] Mukerjee H. G., “Supports of extremal measures with given marginals”, Illinois J. Math., 29 (1985), 248–260 | MR | Zbl
[Ro] Romanovsky J. V., “A simple proof of the Birkhoff-von Neumann theorem on bistochastic matrices”, A Tribute to Ilya Bakelman (College Station, TX, 1993), Discourses Math. Appl., 3, Texas A and M Univ., College Station, TX, 1994, 51–53 | MR | Zbl
[RP] Rattray B. A., Peck J. E. L., “Infinite stochastic matrices”, Trans. Roy. Soc. Canada Sect. III (3), 49 (1955), 55–57 | MR | Zbl
[Ru] Ruckle W. H., Sequence spaces, Res. Notes Math., 49, Pitman (Advanced Publishing Program), Boston, MA-London, 1981 | MR | Zbl
[Sa] Safarov Yu., “Birkhoff's theorem and multidimensional spectra of self-adjoint operators”, J. Funct. Anal., 222 (2005), 61–97 | DOI | MR | Zbl
[ST] Schreck H., Tinhofer G., “A note on certain subpolytopes of the assignment polytope associated with circulant graphs”, Linear Algebra Appl., 111 (1988), 125–134 | DOI | MR | Zbl
[Ti] Tinhofer G., “Strong tree-cographs are Birkhoff graphs”, Discrete Appl. Math., 22:3 (1988/89), 275–288 | DOI | MR
[Vi] Vitale R. A., “Parametrizing doubly stochastic measures”, Distributions with Fixed Marginals and Related Topics (Seattle, WA, 1993), IMS Lecture Notes Monogr. Ser., 28, Inst. Math. Statist., Hayward, CA, 1996, 358–364 | MR