Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2005_17_3_a9, author = {A. A. Solynin}, title = {Gisin homomorphism in general cohomology theories}, journal = {Algebra i analiz}, pages = {184--203}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2005_17_3_a9/} }
A. A. Solynin. Gisin homomorphism in general cohomology theories. Algebra i analiz, Tome 17 (2005) no. 3, pp. 184-203. http://geodesic.mathdoc.fr/item/AA_2005_17_3_a9/
[1] Milnor Dzh., Stashef Dzh., Kharakteristicheskie klassy, Mir, M., 1979 | MR | Zbl
[2] Stong R., Zametki po teorii kobordizmov, Mir, M., 1973 | MR | Zbl
[3] Fomenko A. T., Fuks D. B., Kurs gomotopicheskoi topologii, Nauka, M., 1989 | MR
[4] Hartshorne R., Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York–Heidelberg, 1977 | MR | Zbl
[5] Panin I., “Riemann–Roch theorems for oriented cohomology”, Axiomatic, Enriched and Motivic Homotopy Theory, NATO Sci. Ser. II Math. Phys. Chem., 131, Kluwer Acad. Publ., Dordrecht, 2004, 261–333 | MR | Zbl
[6] Panin I., Smirnov A., Push-forvards in oriented cohomology theories of algebraic varieties, , 2000 http://www.math.uiuc.edu/K-theory/0459
[7] Panin I., Push-forvards in oriented cohomology theories of algebraic varieties. II, Preprint POMI no. 17, 2002
[8] Grothendieck A., “La théorie des classes de Chem”, Bull. Soc. Math. France, 86 (1958), 137–154 | MR | Zbl
[9] Borel A., Serre J.-P., “Le théorème de Riemann–Roch”, Bull. Soc. Math. France, 86 (1958), 97–136 | MR | Zbl
[10] Fulton W., Intersection theory, Ergeb. Math. Grenzgeb. (3), 2, Springer-Verlag, Berlin, 1984 | MR | Zbl
[11] Jouanolou J., “Une suite exacte de Mayer–Vietoris en $K$-théorie algébrique”, Algebraic $K$-Theory. I. Higher $K$-Theories, Proc. Conf. (Battelle Memorial Inst., Seattle, Wash., 1972), Lecture Notes in Math., 341, Springer, Berlin, 1973, 293–316 | MR
[12] Panin I., “Oriented cohomology theories on algebraic varieties”, $K$-Theory, 30:3 (2003), 265–314 | MR | Zbl