Gisin homomorphism in general cohomology theories
Algebra i analiz, Tome 17 (2005) no. 3, pp. 184-203.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2005_17_3_a9,
     author = {A. A. Solynin},
     title = {Gisin homomorphism in general cohomology theories},
     journal = {Algebra i analiz},
     pages = {184--203},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2005_17_3_a9/}
}
TY  - JOUR
AU  - A. A. Solynin
TI  - Gisin homomorphism in general cohomology theories
JO  - Algebra i analiz
PY  - 2005
SP  - 184
EP  - 203
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2005_17_3_a9/
LA  - ru
ID  - AA_2005_17_3_a9
ER  - 
%0 Journal Article
%A A. A. Solynin
%T Gisin homomorphism in general cohomology theories
%J Algebra i analiz
%D 2005
%P 184-203
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2005_17_3_a9/
%G ru
%F AA_2005_17_3_a9
A. A. Solynin. Gisin homomorphism in general cohomology theories. Algebra i analiz, Tome 17 (2005) no. 3, pp. 184-203. http://geodesic.mathdoc.fr/item/AA_2005_17_3_a9/

[1] Milnor Dzh., Stashef Dzh., Kharakteristicheskie klassy, Mir, M., 1979 | MR | Zbl

[2] Stong R., Zametki po teorii kobordizmov, Mir, M., 1973 | MR | Zbl

[3] Fomenko A. T., Fuks D. B., Kurs gomotopicheskoi topologii, Nauka, M., 1989 | MR

[4] Hartshorne R., Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York–Heidelberg, 1977 | MR | Zbl

[5] Panin I., “Riemann–Roch theorems for oriented cohomology”, Axiomatic, Enriched and Motivic Homotopy Theory, NATO Sci. Ser. II Math. Phys. Chem., 131, Kluwer Acad. Publ., Dordrecht, 2004, 261–333 | MR | Zbl

[6] Panin I., Smirnov A., Push-forvards in oriented cohomology theories of algebraic varieties, , 2000 http://www.math.uiuc.edu/K-theory/0459

[7] Panin I., Push-forvards in oriented cohomology theories of algebraic varieties. II, Preprint POMI no. 17, 2002

[8] Grothendieck A., “La théorie des classes de Chem”, Bull. Soc. Math. France, 86 (1958), 137–154 | MR | Zbl

[9] Borel A., Serre J.-P., “Le théorème de Riemann–Roch”, Bull. Soc. Math. France, 86 (1958), 97–136 | MR | Zbl

[10] Fulton W., Intersection theory, Ergeb. Math. Grenzgeb. (3), 2, Springer-Verlag, Berlin, 1984 | MR | Zbl

[11] Jouanolou J., “Une suite exacte de Mayer–Vietoris en $K$-théorie algébrique”, Algebraic $K$-Theory. I. Higher $K$-Theories, Proc. Conf. (Battelle Memorial Inst., Seattle, Wash., 1972), Lecture Notes in Math., 341, Springer, Berlin, 1973, 293–316 | MR

[12] Panin I., “Oriented cohomology theories on algebraic varieties”, $K$-Theory, 30:3 (2003), 265–314 | MR | Zbl