Spectrum of integral means and the modified Bessel function of zero order
Algebra i analiz, Tome 17 (2005) no. 3, pp. 107-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2005_17_3_a5,
     author = {I. R. Kayumov},
     title = {Spectrum of integral means and the modified {Bessel} function of zero order},
     journal = {Algebra i analiz},
     pages = {107--123},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2005_17_3_a5/}
}
TY  - JOUR
AU  - I. R. Kayumov
TI  - Spectrum of integral means and the modified Bessel function of zero order
JO  - Algebra i analiz
PY  - 2005
SP  - 107
EP  - 123
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2005_17_3_a5/
LA  - ru
ID  - AA_2005_17_3_a5
ER  - 
%0 Journal Article
%A I. R. Kayumov
%T Spectrum of integral means and the modified Bessel function of zero order
%J Algebra i analiz
%D 2005
%P 107-123
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2005_17_3_a5/
%G ru
%F AA_2005_17_3_a5
I. R. Kayumov. Spectrum of integral means and the modified Bessel function of zero order. Algebra i analiz, Tome 17 (2005) no. 3, pp. 107-123. http://geodesic.mathdoc.fr/item/AA_2005_17_3_a5/

[1] Anderson J. M., Clunie J., Pommerenke Ch., “On Block functions and normal functions”, J. Reine Angew. Math., 270 (1974), 12–37 | MR | Zbl

[2] Avkhadiev F. G., Kayumov I. R., “Otsenki v klasse Blokha i ikh obobscheniya”, Dokl. RAN, 349:5 (1996), 583–585 | MR | Zbl

[3] Barański K., Volberg A., Zdunik A., “Brennan's conjecture and the Mandelbrot set”, Internat. Math. Res. Notices, no. 12 (1998), 589–600 | DOI | MR

[4] Bertilsson D., On Brennan's conjecture in conformal mapping, Doctoral Thesis, Royal Inst. of Tech., Stockholm, 1999 | MR | Zbl

[5] Brennan J. E., “The integrability of the derivative in conformal mapping”, J. London Math. Soc. (2), 18 (1978), 261–272 | DOI | MR | Zbl

[6] Carleson L., Jones P., “On coefficient problems for univalent functions and conformal dimension”, Duke Math. J., 66:2 (1992), 169–206 | DOI | MR | Zbl

[7] Carleson L., Makarov N. G., “Some results connected with Brennan's conjecture”, Ark. Mat., 32 (1994), 33–62 | DOI | MR | Zbl

[8] Gnuschke-Hauschild D., Pommerenke Ch., “On Bloch functions and gap series”, J. Reine Angew. Math., 367 (1986), 172–186 | MR | Zbl

[9] Jones P. W., Makarov N. G., “Density properties of harmonic measure”, Ann. of Math. (2), 142 (1995), 427–455 | DOI | MR | Zbl

[10] Kayumov I. R., “Lower estimates for the integral means spectrum”, Complex Variables Theory Appl., 44 (2001), 165–171 | MR | Zbl

[11] Kayumov I. R., “The integral means spectrum for lacunary series”, Ann. Acad. Sci. Fenn. Math., 26 (2001), 447–453 | MR | Zbl

[12] Kayumov I. R., “Lower estimate for the integral means spectrum for $p=-1$”, Proc. Amer. Math. Soc., 130:4 (2002), 1005–1007 | DOI | MR | Zbl

[13] Kayumov I. P., “Teorema iskazheniya dlya odnolistnykh lakunarnykh ryadov”, Sib. mat. zh., 44:6 (2003), 1273–1279 | MR | Zbl

[14] Makarov N. G., “A note on integral means of the derivative in conformal mapping”, Proc. Amer. Math. Soc., 96 (1986), 233–235 | DOI | MR

[15] Makarov N. G., “Conformal mapping and Hausdorff measures”, Ark. Mat., 25 (1987), 41–89 | DOI | MR | Zbl

[16] Makarov N. G., “Fine structure of harmonic measure”, Algebra i analiz, 10:2 (1998), 1–62 | MR | Zbl

[17] Pommerenke Ch., “On Bloch functions”, J. London Math. Soc. (2), 2 (1970), 689–695 | MR | Zbl

[18] Pommerenke Ch., Boundary behaviour of conformal maps, Grundlehren Math. Wiss., 299, Springer-Verlag, Berlin, 1992 | MR | Zbl

[19] Rohde S., Hausdorffmas und Randverhalten analytischer Functionen, Thesis, Technische Univ., Berlin, 1989