A~tropical approach to enumerative geometry
Algebra i analiz, Tome 17 (2005) no. 2, pp. 170-214.

Voir la notice de l'article provenant de la source Math-Net.Ru

A detailed algebraic-geometric background is presented for the tropical approach to enumeration of singular curves on toric surfaces, which consists of reducing the enumeration of algebraic curves to that of non-Archimedean amoebas, the images of algebraic curves by a real-valued non-Archimedean valuation. This idea was proposed by Kontsevich and recently realized by Mikhalkin, who enumerated the nodal curves on toric surfaces [18]. The main technical tools are a refined tropicalization of one-parametric equisingular families of curves and the patchworking construction of singular algebraic curves. The case of curves with a cusp and the case of real nodal curves are also treated.
@article{AA_2005_17_2_a7,
     author = {E. Shustin},
     title = {A~tropical approach to enumerative geometry},
     journal = {Algebra i analiz},
     pages = {170--214},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2005_17_2_a7/}
}
TY  - JOUR
AU  - E. Shustin
TI  - A~tropical approach to enumerative geometry
JO  - Algebra i analiz
PY  - 2005
SP  - 170
EP  - 214
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2005_17_2_a7/
LA  - en
ID  - AA_2005_17_2_a7
ER  - 
%0 Journal Article
%A E. Shustin
%T A~tropical approach to enumerative geometry
%J Algebra i analiz
%D 2005
%P 170-214
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2005_17_2_a7/
%G en
%F AA_2005_17_2_a7
E. Shustin. A~tropical approach to enumerative geometry. Algebra i analiz, Tome 17 (2005) no. 2, pp. 170-214. http://geodesic.mathdoc.fr/item/AA_2005_17_2_a7/

[1] Caporaso L., Harris J., “Counting plane curves of any genus”, Invent. Math., 131:2 (1998), 345–392 | DOI | MR | Zbl

[2] Caporaso L., Harris J., “Parameter spaces for curves on surfaces and enumeration of rational curves”, Compositio Math., 113:2 (1998), 155–208 | DOI | MR | Zbl

[3] Chen Xi, “Rational curves on $K3$ surfaces”, J. Algebraic Geom., 8 (1999), 245–278 | MR | Zbl

[4] Chiantini L., Ciliberto C., “On the Severi varieties on surfaces in $\mathbf P^3$”, J. Algebraic Geom., 8:1 (1999), 67–83 | MR | Zbl

[5] Diaz S., Harris J., “Ideals associated to deformations of singular plane curves”, Trans. Amer. Math. Soc., 309:2 (1988), 433–468 | DOI | MR | Zbl

[6] Forsberg M., Passare M., Tsikh A., “Laurent determinants and arrangements of hyperplane amoebas”, Adv. Math., 151 (2000), 45–70 | DOI | MR | Zbl

[7] Gel'fand I. M., Kapranov M. M., Zelevinsky A. V., Discriminants, resultants, and multidimensional determinants, Birkhäuser Boston, Inc., Boston, MA, 1994 | MR

[8] Henriques A., An analogue of convexity for complements of amoebas of varieties of higher codimensions, Preprint, Berkeley, 2001 | Zbl

[9] Hirschowitz A., “La méthode d'Horace pour l'interpolation à plusieurs variables”, Manuscripta Math., 50 (1985), 337–388 | DOI | MR | Zbl

[10] Itenberg I., Shustin E., “Singular points and limit cycles of planar polynomial vector fields”, Duke Math. J., 102:1 (2000), 1–37 | DOI | MR | Zbl

[11] Itenberg I., Shustin E., “Viro theorem and topology of real and complex combinatorial hypersurfaces”, Israel J. Math., 133 (2003), 189–238 | DOI | MR | Zbl

[12] Kapranov M. M., Amoebas over non-Archimedean fields, Preprint, 2000

[13] Kontsevich M., Soibelman Y., Homological mirror symmetry and torus fibrations, Preprint | MR

[14] Kontsevich M., Tschinkel Yu., Non-Archimedean Kähler geometry, to appear

[15] Mikhalkin G., “Real algebraic curves, the moment map and amoebas”, Ann. of Math. (2), 151:1 (2000), 309–326 | DOI | MR | Zbl

[16] Mikhalkin G., Amoebas of algebraic varieties, Preprint

[17] Mikhalkin G., Rullgard H., “Amoebas of maximal area”, Internat. Math. Res. Notices, no. 9 (2001), 441–451 | DOI | MR

[18] Mikhalkin G., “Counting curves via lattice paths in polygons”, C. R. Math. Acad. Sci. Paris, 336:8 (2003), 629–634 | MR | Zbl

[19] Mikhalkin G., Enumerative tropical algebraic geometry in $\mathbb R^2$, Preprint | MR

[20] Passare M., Rullgard H., Amoebas, Monge–Ampère measures and triangulations of the Newton polytope, Res. Rep. in Math., 10, Stockholm Univ., 2000

[21] Rullgard H., “Stratification des espaces de polynômes de Laurent et la structure de leurs amibes”, C. R. Acad. Sci. Paris Ser. I Math., 331 (2000), 355–358 | MR | Zbl

[22] Shustin E., “Real plane algebraic curves with prescribed singularities”, Topology, 32 (1993), 845–856 | DOI | MR | Zbl

[23] Shustin E., “Surjectivity of the resultant map: a solution to the inverse Bezout problem”, Comm. Algebra, 23:3 (1995), 1145–1163 | DOI | MR | Zbl

[24] Shustin E., “Critical points of real polynomials, subdivisions of Newton polyhedra and topology of real algebraic hypersurfaces”, Topology of Real Algebraic Varieties and Related Topics, Amer. Math. Soc. Transl. (2), 173, Amer. Math. Soc., Providence, RI, 1996, 203–223 | MR | Zbl

[25] Shustin E., “Gluing of singular and critical points”, Topology, 37:1 (1998), 195–217 | DOI | MR | Zbl

[26] Shustin E., “Lower deformations of isolated hypersurface singularities”, Algebra i analiz, 11:5 (1999), 221–249 | MR

[27] Shustin E., Patchworking singular algebraic curves, non-Archimedean amoebas and enumerative geometry, Preprint | MR

[28] Shustin E., Tyomkin I., Patchworking singular algebraic curves, to appear in Israel J. Math.

[29] Sturmfels B., Solving systems of polynomial equations, CBMS Regional Conf. Ser. in Math., 97, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[30] Viro O. Ya., “Skleivanie algebraicheskikh giperpoverkhnostei, ustraneniya osobennostei i postroeniya krivykh”, Trudy Leningradskoi Mezhdunarodnoi topologicheskoi konferentsii (23–27 avg. 1982 g.), Nauka, L., 1983, 149–197 | MR

[31] Viro O. Ya., “Gluing of plane real algebraic curves and constructions of curves of degrees 6 and 7”, Topology (Leningrad, 1982), Lecture Notes in Math., 1060, Springer, Berlin etc., 1984, 187–200 | MR

[32] Viro O. Ya., “Ploskie veschestvennye algebraicheskie krivye: postroeniya s kontroliruemoi topologiei”, Algebra i analiz, 1:5 (1989), 1–73 | MR

[33] Viro O. Ya., Patchworking real algebraic varieties, Preprint; , 1995 http://www.math.uu.se/~oleg/preprints.html

[34] Wahl J., “Equisingular deformations of plane algebroid curves”, Trans. Amer. Math. Soc., 193 (1974), 143–170 | DOI | MR | Zbl

[35] Welschinger J.-Y., “Invariants of real rational symplectic 4-manifolds and lower bounds in real enumerative geometry”, C. R. Math. Acad. Sci. Paris, 336 (2003), 341–344 | MR | Zbl