Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2005_17_2_a2, author = {S. V. Buyalo}, title = {Asimptotic dimension of the hyperbolic space and the capacity dimension of its boundary at infinity}, journal = {Algebra i analiz}, pages = {70--95}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2005_17_2_a2/} }
S. V. Buyalo. Asimptotic dimension of the hyperbolic space and the capacity dimension of its boundary at infinity. Algebra i analiz, Tome 17 (2005) no. 2, pp. 70-95. http://geodesic.mathdoc.fr/item/AA_2005_17_2_a2/
[As] Assouad P., “Sur la distance de Nagata”, C. R. Acad. Sci. Paris Sér. I Math., 294:1 (1982), 31–34 | MR | Zbl
[BD] Bell G., Dranishnikov A., On asymptotic dimension of groups acting on trees, arXiv:math.GR/0111087 | MR
[BoS] Bonk M., Schramm O., “Embeddings of Gromov hyperbolic spaces”, Geom. Funct. Anal., 10:2 (2000), 266–306 | DOI | MR | Zbl
[BS] Buyalo S., Schroeder V., Hyperbolic dimension of metric spaces, arXiv:math.GT/0404525 | MR
[Gr] Gromov M., “Asymptotic invariants of infinite groups”, Geometric Group Theory, Vol. 2 (Sussex, 1991), London Math. Soc. Lecture Note Ser., 182, eds. G. A. Niblo, M. A. Roller, Cambridge Univ. Press, Cambridge, 1993, 1–295 | MR
[He] Heinonen J., Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001 | MR
[LS] Lang U., Schlichenmaier T., Nagata dimension, quasisymmetric embeddings and Lipschitz extensions, arXiv:math.MG/0410048 | MR
[Sp] Spener E., Algebraicheski topologiya, Mir, M., 1971