Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2005_17_1_a8, author = {A. V. Kitaev}, title = {Grothendiecks dessins d'enfants, their deformations, and algebraic solutions of the sixth {Painlev\'e} and {Gauss} hypergeometric equations}, journal = {Algebra i analiz}, pages = {224--275}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2005_17_1_a8/} }
TY - JOUR AU - A. V. Kitaev TI - Grothendiecks dessins d'enfants, their deformations, and algebraic solutions of the sixth Painlev\'e and Gauss hypergeometric equations JO - Algebra i analiz PY - 2005 SP - 224 EP - 275 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2005_17_1_a8/ LA - en ID - AA_2005_17_1_a8 ER -
%0 Journal Article %A A. V. Kitaev %T Grothendiecks dessins d'enfants, their deformations, and algebraic solutions of the sixth Painlev\'e and Gauss hypergeometric equations %J Algebra i analiz %D 2005 %P 224-275 %V 17 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AA_2005_17_1_a8/ %G en %F AA_2005_17_1_a8
A. V. Kitaev. Grothendiecks dessins d'enfants, their deformations, and algebraic solutions of the sixth Painlev\'e and Gauss hypergeometric equations. Algebra i analiz, Tome 17 (2005) no. 1, pp. 224-275. http://geodesic.mathdoc.fr/item/AA_2005_17_1_a8/
[1] Andreev F. V., Kitaev A. V., “Some examples of $RS_3^2(3)$-transformations of ranks 5 and 6 as the higher order transformations for the hypergeometric function”, Ramanujan, 2003, no. 4, 455–476 | DOI | MR | Zbl
[2] Andreev F. V., Kitaev A. V., “Transformations $RS_3^2(3)$ of the ranks $\le4$ and algebraic solutions of the sixth Painleve equation”, Comm. Math. Phys., 228 (2002), 151–176 | DOI | MR | Zbl
[3] Belyi G. V., “O rasshireniyakh Galua maksimalnogo krugovogo polya”, Izv. AN SSSR. Ser. mat., 43:2 (1979), 267–276 | MR | Zbl
[4] Boalch P., The Klein solution to Painlevé's sixth equation, e-preprint (http://xyz.lanl.gov) , 2003, 1–38 math.AG/0308221 | Zbl
[5] Doran Ch. F., “Algebraic and geometric isomonodromic deformations”, J. Differential Geom., 59 (2001), 33–85 | MR | Zbl
[6] Dubrovin B., Mazzocco M., “Monodromy of certain Painlevé-VI transcendents and reflection groups”, Invent. Math., 141 (2000), 55–147 | DOI | MR | Zbl
[8] Granville A., Tucker T. J., “It's as easy as abc”, Notices Amer. Math. Soc., 49:10 (2002), 1224–1231 | MR | Zbl
[9] Jimbo M., Miwa T., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II”, Phys. D, 2 (1981), 407–448 | DOI | MR
[10] Kitaev A. V., “Special functions of the isomonodromy type”, Acta Appl. Math., 64:1 (2000), 1–32 | DOI | MR | Zbl
[11] Kitaev A. V., “Spetsialnye funktsii izomonodromnogo tipa, ratsionalnye preobrazovaniya spektralnogo parametra i algebraicheskie resheniya shestogo uravneniya Penleve”, Algebra i analiz, 14:3 (2002), 121–139 ; e-preprint , 2000, 1–13 http://arxiv.org/abs/nlin/0102020 | MR | Zbl
[12] Kitaev A. V., “On similarity reductions of the three-wave resonant system to the Painlevé equations”, J. Phys. A, 23 (1990), 3543–3553 | DOI | MR | Zbl
[13] Kitaev A. V., “Quadratic transformations for the sixth Painlevé equation”, Lett. Math. Phys., 21 (1991), 105–111 | DOI | MR | Zbl
[14] Kitaev A. V., Korotkin D. A., “On solutions of the Schlesinger equations in terms of $\Theta$-functions”, Int. Math. Res. Not., , no. 17 (1998), 877–905 | DOI | MR
[15] Magot N., Zvonkin A., “Belyi functions for Archimedean solids”, Discrete Math., 217:1–3 (2000), 249–271 | DOI | MR | Zbl
[16] Manin Yu. I., “Sixth Painlevé equation, universal elliptic curve, and mirror of $\mathbf P^2$”, Geometry of Differential Equations, Amer. Math. Soc. Transl. Ser. 2, 186, Amer. Math. Soc., Providence, RI, 1998, 131–151 | MR | Zbl
[17] Noumi M., Takano K., Yamada Ya., “Bäcklund transformations and the manifolds of Painlevé systems”, Funkcial. Ekvac., 45:2 (2002), 237–258 | MR | Zbl
[18] Okamoto K., “Studies on the Painleve equations. I. Sixth Painlevé equation $P_{\rm VI}$”, Ann. Mat. Pura Appl. (4), 146 (1987), 337–381 | DOI | MR | Zbl
[19] Schwarz H. A., “Über diejenigen Fälle, in welchen die Gaussische hypergeometrische Reihe eine algebraische Function ihres vierten Elementes darstellt”, J. Reine Angew. Math., 75 (1873), 292–335
[20] Singerman D., “Riemann surfaces, Belyi functions and hypermaps”, Topics on Riemann Surfaces and Fuchsian Groups (Madrid, 1998), London Math. Soc. Lecture Note Ser., 287, Cambridge Univ. Press, Cambridge, 2001, 43–68 | MR | Zbl