Cayley--Hamilton theorem for quantum matrix algebras of type $\mathrm{GL}(m\mid n)$
Algebra i analiz, Tome 17 (2005) no. 1, pp. 160-182.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2005_17_1_a4,
     author = {D. I. Gurevich and P. N. Pyatov and P. A. Saponov},
     title = {Cayley--Hamilton theorem for quantum matrix algebras of type $\mathrm{GL}(m\mid n)$},
     journal = {Algebra i analiz},
     pages = {160--182},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2005_17_1_a4/}
}
TY  - JOUR
AU  - D. I. Gurevich
AU  - P. N. Pyatov
AU  - P. A. Saponov
TI  - Cayley--Hamilton theorem for quantum matrix algebras of type $\mathrm{GL}(m\mid n)$
JO  - Algebra i analiz
PY  - 2005
SP  - 160
EP  - 182
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2005_17_1_a4/
LA  - ru
ID  - AA_2005_17_1_a4
ER  - 
%0 Journal Article
%A D. I. Gurevich
%A P. N. Pyatov
%A P. A. Saponov
%T Cayley--Hamilton theorem for quantum matrix algebras of type $\mathrm{GL}(m\mid n)$
%J Algebra i analiz
%D 2005
%P 160-182
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2005_17_1_a4/
%G ru
%F AA_2005_17_1_a4
D. I. Gurevich; P. N. Pyatov; P. A. Saponov. Cayley--Hamilton theorem for quantum matrix algebras of type $\mathrm{GL}(m\mid n)$. Algebra i analiz, Tome 17 (2005) no. 1, pp. 160-182. http://geodesic.mathdoc.fr/item/AA_2005_17_1_a4/

[DKS] Damaskinskii E. V., Kulish P. P., Sokolov M. A., “Razlozheniya Gaussa kvantovykh grupp i supergrupp”, Zap. nauch. semin. POMI, 224, 1995, 155–177 | MR

[DJ1] Dipper R., James G., “Representations of Hecke algebras of general linear groups”, Proc. London Math. Soc. (3), 52 (1986), 20–52 | DOI | MR | Zbl

[DJ2] Dipper R., James G., “Blocks and idempotents of Hecke algebras of general linear groups”, Proc. London Math. Soc. (3), 54 (1987), 57–82 | DOI | MR | Zbl

[D] Drinfeld V. G., “Kvazikhopfovy algebry”, Algebra i analiz, 1:6 (1989), 114–148 | MR

[FP] Faddeev L. D., Pyatov P. N., “The differential calculus on quantum linear groups”, Contemporary Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 175, Amer. Math. Soc., Providence, RI, 1996, 35–47 | MR | Zbl

[FRT] Reshetikhin N. Yu., Takhtadzhyan L. A., Faddeev L. D., “Kvantovanie grupp Li i algebr Li”, Algebra i analiz, 1:1 (1989), 178–206 | MR

[G] Gurevich D. I., “Algebraicheskie aspekty kvantovogo uravneniya Yanga–Bakstera”, Algebra i analiz, 2:4 (1990), 119–148 | MR | Zbl

[Gou] Gould M. D., “On the matrix elements of the $U(n)$ generators”, J. Math. Phys., 22 (1981), 15–22 | DOI | MR | Zbl

[GPS] Gurevich D., Pyatov P., Saponov P., “Hecke symmetries and characteristic relations on reflection equation algebras”, Lett. Math. Phys., 41 (1997), 255–264 | DOI | MR | Zbl

[GS] Gurevich D., Saponov P., “Quantum line bundles via Cayley–Hamilton identity”, J. Phys. A, 34:21 (2001), 4553–4569 | DOI | MR | Zbl

[GS2] Gurevich D., Saponov P., “Quantum line bundles on a noncommutative sphere”, J. Phys. A, 35 (2002), 9629–9643 | DOI | MR | Zbl

[I] Isaev A. P., “Kvantovye gruppy i uravneniya Yanga–Bakstera”, Fiz. elementar. chastits i atom. yadra (Fizika EChAYa), 26 (1995), 1204–1263

[IOP1] Isaev A. P., Ogievetsky O. V., Pyatov P. N ., “On quantum matrix algebras satisfying the Cayley–Hamilton–Newton identities”, J. Phys. A, 32 (1999), L115–L121 | DOI | MR | Zbl

[IOP2] Isaev A. P., Ogievetsky O. V., Pyatov P. N., “Cayley–Hamilton–Newton identities and quasitriangular Hopf algebras”, Supersymmetries and Quntum Symmetries (Dubna, July 27–31, 1999), eds. E. Ivanov, S. Krivonos and A. Pashnev, 2000, 397–405; Preprint E2-2000-82, JINR, Dubna; math.QA/9912197

[IOPS] Isaev A. P., Ogievetsky O., Pyatov P. N., Saponov P. A., “Characteristic polynomials for quantum matrices”, Supersymmetries and Quantum Symmetries (Dubna, Russia, 1997), Lecture Notes in Phys., 524, eds. J. Wess and E. Ivanov, Springer-Verlag, Berlin, 1999, 322–330 | MR

[IP] Isaev A. P., Pyatov P. N., “Covariant differential complexes on quantum linear groups”, J. Phys. A, 28 (1995), 2227–2246 | DOI | MR | Zbl

[KT1] Kantor I., Trishin I., “On a concept of determinant in the supercase”, Comm. Algebra, 22 (1994), 3679–3739 | DOI | MR | Zbl

[KT2] Kantor I., Trishin I., “On the Cayley–Hamilton equation in the supercase”, Comm. Algebra, 27 (1999), 233–259 | DOI | MR | Zbl

[KS] Kulish P. P., Sasaki R., “Covariance properties of reflection equation algebras”, Prog. Theoret. Phys., 89 (1993), 741–761 | DOI | MR

[Mac] Macdonald I. G., Symmetric functions and Hall polynomials, 2nd ed., Oxford Math. Monogr., Oxford Univ. Press, New York, 1995 ; Mir, M., 1985 | MR | Zbl | Zbl

[Ml] Murphy G. E., “On the representation theory of the symmetric groups and associated Hecke algebras”, J. Algebra, 152 (1992), 492–513 | DOI | MR | Zbl

[M2] Murphy G. E., “The representations of Hecke algebras of type $A_n$”, J. Algebra, 173 (1995), 97–121 | DOI | MR | Zbl

[NT] Nazarov M., Tarasov V., “Yangians and Gelfand–Zetlin bases”, Publ. Res. Inst. Math. Sci., 30 (1994), 459–478 | DOI | MR | Zbl

[OP] Ogievetsky O., Pyatov P., Lecture on Hecke algebras. Symmetries and Integrable Systems (Dubna, Russia, June 8–11, 1999), JINR, Dubna, D2,5-2000, 218, pp. 39–88, Preprint CPT-2000/P. 4076 and MPI 01-40

[OP2] Ogievetsky O. V., Pyatov P. N., Cayley–Hamilton identities for quantum matrix algebras of Birman–Murakami–Wenzl type, gotovitsya k publikatsii

[PS] Pyatov P., Saponov P., “Characteristic relations for quantum matrices”, J. Phys. A, 28 (1995), 4415–4421 | DOI | MR | Zbl

[R] Ram A., “Seminormal representations of Weyl groups and Iwahori–Hecke algebras”, Proc. London Math. Soc. (3), 75 (1997), 99–133 ; arXiv:math.RT/9511223 | DOI | MR | Zbl