Functional integration and the twopoint correlation function of the one-dimensional Bose-gas in the harmonic potential
Algebra i analiz, Tome 17 (2005) no. 1, pp. 84-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2005_17_1_a2,
     author = {N. M. Bogolyubov and K. L. Malyshev},
     title = {Functional integration and the twopoint correlation function of the one-dimensional {Bose-gas} in the harmonic potential},
     journal = {Algebra i analiz},
     pages = {84--114},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2005_17_1_a2/}
}
TY  - JOUR
AU  - N. M. Bogolyubov
AU  - K. L. Malyshev
TI  - Functional integration and the twopoint correlation function of the one-dimensional Bose-gas in the harmonic potential
JO  - Algebra i analiz
PY  - 2005
SP  - 84
EP  - 114
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2005_17_1_a2/
LA  - ru
ID  - AA_2005_17_1_a2
ER  - 
%0 Journal Article
%A N. M. Bogolyubov
%A K. L. Malyshev
%T Functional integration and the twopoint correlation function of the one-dimensional Bose-gas in the harmonic potential
%J Algebra i analiz
%D 2005
%P 84-114
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2005_17_1_a2/
%G ru
%F AA_2005_17_1_a2
N. M. Bogolyubov; K. L. Malyshev. Functional integration and the twopoint correlation function of the one-dimensional Bose-gas in the harmonic potential. Algebra i analiz, Tome 17 (2005) no. 1, pp. 84-114. http://geodesic.mathdoc.fr/item/AA_2005_17_1_a2/

[1] Mewes M.-O., Andrews M. R., van Druten N. J., Kurn D. M., Durfee D. S., Ketterle W., “Bose–Einstein condensation in a tightly confining dc magnetic trap”, Phys. Rev. Lett., 77 (1996), 416–419 | DOI

[2] Jin D. S., Ensher J. R., Matthews M. R., Wieman C. E., Cornell E. A., “Collective excitations of a Bose–Einstein condensate in a dilute gas”, Phys. Rev. Lett., 77 (1996), 420–423 | DOI

[3] Görlitz A., Vogels J. M., Leanhardt A. E., Raman C., Gustavson T. L., Abo-Shaeer J. R., Chikkatur A. P., Gupta S., Inouye S., Rosenband T., Ketterle W., “Realization of Bose–Einstein condensates in lower dimensions”, Phys. Rev. Lett., 87 (2001), 130402 | DOI

[4] Moritz H., Stöferle T., Köhl M., Esslinger T., “Exciting collective oscillations in a trapped ID gas”, Phys. Rev. Lett., 91 (2003), 250402 | DOI

[5] Pethic C. J., Smith H., Bose–Einstein condensation in dilute gases, Cambridge Univ. Press, Cambridge, 2002

[6] Bogolyubov H. H., Izbrannye trudy v trekh tomakh, Nauk. dumka, Kiev, 1969–1971

[7] Popov V. N., Faddeev L. D., “Ob odnom podkhode k teorii boze-gaza pri nizkikh temperaturakh”, Zh. eksp. teor. fiz., 47:4 (1964), 1315–1321 | MR

[8] Popov V. N., “K teorii sverkhtekuchesti dvumernykh i odnomernykh boze-sistem”, Teor. i mat. fiz., 11:3 (1972), 354–365

[9] Sklyanin E. K., Faddeev L. D., “Kvantovomekhanicheskii podkhod k vpolne integriruemym modelyam teorii polya”, Dokl. AN SSSR, 243:6 (1978), 1430–1433

[10] Faddeev L. D., “Quantum completely integrable models in field theory”, L. D. Faddeev 40 Years in Mathematical Physics, World Sci. Ser. 20th Century Math., 2, World Sci., Singapore, 1995, 187–235 | MR

[11] Bogolyubov H. M., Izergin A. G., Korepin V. E., Korrelyatsionnye funktsii integriruemykh sistem i kvantovyi metod obratnoi zadachi, Nauka, M., 1992 | MR | Zbl

[12] Korepin V. E., Bogoliubov N. M., Izergin A. G., Quantum inverse scattering method and correlation functions, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[13] Lieb E. H., Seiringer R., Yngvason J., “One-dimensional behavior of dilute, trapped Bose gases”, Comm. Math. Phys., 244 (2004), 347–393 | DOI | MR | Zbl

[14] Olshanii M., “Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons”, Phys. Rev. Lett., 81 (1998), 938–941 | DOI

[15] Girardeau M. D., Nguyen Hieu, Olshanii M., Effective interactions, Fermi–Bose duality, and ground states of ultracold atomic vapors in tight de Broglie waveguides, cond-mat/0403721

[16] Bogoliubov N. M., Malyshev C., Bullough R. K., Kapitonov V. S., Timonen J., “Asymptotic behaviour of correlation functions in the trapped Bose gas”, Fiz. elementar. chastits i atom. yadra (Fizika EChAYa), 31:7B (2000), 115–121

[17] Bogolyubov N. M., “Mnogochastichnye korrelyatsionnye funktsii boze-gaza v lovushke”, Zap. nauch. semin. POMI, 269, 2000, 125–135 | Zbl

[18] Bogoliubov N. M., Bullough R. K., Kapitonov V. S., Malyshev C., Timonen J., “Finitetemperature correlations in the trapped Bose–Einstein gas”, Europhys. Lett., 55 (2001), 755–761 | DOI

[19] Bullou P. K., Bogolyubov H. M., Kapitonov V. S., Malyshev K. L., Timonen I., Rybin A. V., Varzugin G. G., Lindberg M., “Kvantovye integriruemye i neintegriruemye modeli, osnovannye na nelineinom uravnenii Shredingera, dlya realizuemoi kondensatsii Boze–Einshteina v razmernosti $d+1$ ($d=1,2,3$)”, Teor. i mat. fiz., 134:1 (2003), 55–73 | MR | Zbl

[20] Bogoliubov N. M., Malyshev C., Bullough R. K., Timonen J., “Finite-temperature correlations in the one-dimensional trapped and untrapped Bose gases”, Phys. Rev. A, 69 (2004), 023619 | DOI

[21] Popov V. H., Kontinualnye integraly v kvantovoi teorii polya i statisticheskoi fizike, Atomizdat, M., 1976 | MR

[22] Slavnov A. A., Faddeev L. D., Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1978 ; 2-е изд., 1988 | MR | Zbl

[23] Vasilev A. N., Funktsionalnye metody v kvantovoi teorii polya i statistike, LGU, L., 1976

[24] Popov V. N., Functional integrals and collective excitations, Cambridge Univ. Press, Cambridge, 1987 ; 2nd edition, 1990 | MR

[25] Popov V. H., “Vozmozhnost narusheniya zakona podobiya pri fazovom perekhode sistemy v sverkhtekuchee sostoyanie”, Zap. nauch. semin. LOMI, 150, 1986, 87–103

[26] Itzykson C., Zuber J.-B., Quantum field theory, McGraw-Hill, New York, 1980 | MR

[27] Ramond P., Field theory: a modern primer, Benjamin/Cummings Publ. Co, Reading, MA, 1981 | MR

[28] Dalfovo F., Giorgini S., Pitaevskii L. P., Stringari S., “Theory of Bose–Einstein condensation in trapped gases”, Rev. Modern Phys., 71 (1999), 463–512 | DOI

[29] Naraschewski M., Stamper-Kurn D. M., “Analytical description of a trapped semi-ideal Bose gas at finite temperature”, Phys. Rev. A, 58 (1998), 2423–2426 | DOI

[30] Stringari S., “Collective excitations of a trapped Bose-condensed gas”, Phys. Rev. Lett., 77 (1996), 2360–2363 | DOI

[31] Stringari S., “Dynamics of Bose–Einstein condensed gases in highly deformed traps”, Phys. Rev. A, 58 (1998), 2385–2388 | DOI

[32] Hobson E. W., The theory of spherical and ellipsoidal harmonics, Cambridge Univ. Press, Cambridge, 1931

[33] Petrov D. S., Shlyapnikov G. V., Walraven J. T. M., “Regimes of quantum degeneracy in trapped ID gases”, Phys. Rev. Lett., 85 (2000), 3745–3749 | DOI

[34] Luxat D. L., Griffin A., “Dynamic correlation functions in one-dimensional quasicondensates”, Phys. Rev. A, 67 (2003), 043603 | DOI

[35] Magnus W., Oberhettinger F., Soni R. P., Formulas and theorems for the special functions of mathematical physics, Grundlehren Math. Wiss., 52, Springer-Verlag, New York, 1966 | MR | Zbl

[36] Abramowitz M., Stegun I. A., Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover, New York, 1992 ; Nauka, M., 1979 | MR | Zbl