Nonlinear hyperbolic equations in surface theory: integrable discretizations and approximation results
Algebra i analiz, Tome 17 (2005) no. 1, pp. 53-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

A discretization of the Goursat problem for a class of nonlinear hyperbolic systems is proposed. Local $C^\infty$-convergence of the discrete solutions is proved, and the approximation error is estimated. The results hold in arbitrary dimensions, and for an arbitrary number of dependent variables. The sine-Gordon equation serves as a guiding example for application of the approximation theory. As the main application, a geometric Goursat problem for surfaces of constant negative Gaussian curvature ($K$-surfaces) is formulated, and approximation by discrete $K$-surfaces is proved. The result extends to the simultaneous approximation of Bäcklund transformations. This rigorously justifies the generally accepted belief that the theory of integrable surfaces and their transformations may be obtained as the continuum limit of a unifying multidimensional discrete theory.
@article{AA_2005_17_1_a1,
     author = {A. I. Bobenko and D. Matthes and Yu. B. Suris},
     title = {Nonlinear hyperbolic equations in surface theory: integrable discretizations and approximation results},
     journal = {Algebra i analiz},
     pages = {53--83},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2005_17_1_a1/}
}
TY  - JOUR
AU  - A. I. Bobenko
AU  - D. Matthes
AU  - Yu. B. Suris
TI  - Nonlinear hyperbolic equations in surface theory: integrable discretizations and approximation results
JO  - Algebra i analiz
PY  - 2005
SP  - 53
EP  - 83
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2005_17_1_a1/
LA  - en
ID  - AA_2005_17_1_a1
ER  - 
%0 Journal Article
%A A. I. Bobenko
%A D. Matthes
%A Yu. B. Suris
%T Nonlinear hyperbolic equations in surface theory: integrable discretizations and approximation results
%J Algebra i analiz
%D 2005
%P 53-83
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2005_17_1_a1/
%G en
%F AA_2005_17_1_a1
A. I. Bobenko; D. Matthes; Yu. B. Suris. Nonlinear hyperbolic equations in surface theory: integrable discretizations and approximation results. Algebra i analiz, Tome 17 (2005) no. 1, pp. 53-83. http://geodesic.mathdoc.fr/item/AA_2005_17_1_a1/

[ABS] Adler V. E., Bobenko A. I., Suris Yu. B., “Classification of integrable equations on quad-graphs. The consistency approach”, Comm. Math. Phys., 233 (2003), 513–543 | MR | Zbl

[BP1] Bobenko A. I., Pinkall U., “Discrete surfaces with constant negative Gaussian curvature and the Hirota equation”, J. Differential Geom., 43 (1996), 527–611 | MR | Zbl

[BP2] Bobenko A. I., Pinkall U., “Discretization of surfaces and integrable systems”, Discrete Integrable Geometry and Physics (Vienna, 1996), Oxford Lecture Ser. Math. Appl., 16, eds. A. I. Bobenko, R. Seiler, Oxford Univ. Press, New York, 1999, 3–58 | MR | Zbl

[BMS] Bobenko A. I., Matthes D., Suris Yu. B., “Discrete and smooth orthogonal systems: $C^\infty$-approximation”, Int. Math. Res. Not., no. 45 (2003), 2415–2459 | DOI | MR

[BS1] Bobenko A. I., Suris Yu. B., “Integrable systems on quad-graphs”, Int. Math. Res. Not., no. 11 (2002), 573–611 | DOI | MR

[BS2] Bobenko A. I., Suris Yu. B., “Integrable noncommutative equations on quad-graphs. The consistency approach”, Lett. Math. Phys., 61 (2002), 241–254 | DOI | MR | Zbl

[D] Doliwa A., “Discrete asymptotic nets and $W$-congruences in Plücker line geometry”, J. Geom. Phys., 39:1 (2001), 9–29 | DOI | MR

[DS] Doliwa A., Santini P. M., “Multidimensional quadrilateral lattices are integrable”, Phys. Lett. A, 233 (1997), 365–372 | DOI | MR | Zbl

[DH] Dziuk G., Hutchinson J. E., “The discrete Plateau problem. I: Algorithm and numerics”, Math. Comp., 68:225 (1999), 1–23 | DOI | MR | Zbl

[FT] Faddeev L. D., Takhtadzhyan L. A., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR

[FV1] Faddeev L. D., Volkov A. Yu., “Hirota equation as an example of an integrable symplectic map”, Lett. Math. Phys., 32 (1994), 125–135 | DOI | MR | Zbl

[FV2] Faddeev L. D., Volkov A. Yu., “Algebraic quantization of integrable models in discrete space-time”, Discrete Integrable Geometry and Physics (Vienna, 1996), Oxford Lecture Ser. Math. Appl., 16, eds. A. I. Bobenko, R. Seiler, Oxford Univ. Press, New York, 1999, 301–319 | MR | Zbl

[Hin] Hinze M., “On the numerical approximation of unstable minimal surfaces with polygonal boundaries”, Numer. Math., 73:1 (1996), 95–118 | DOI | MR | Zbl

[H] Hirota R., “Nonlinear partial difference equations. III. Discrete sine-Gordon equation”, J. Phys. Soc. Japan, 43 (1977), 2079–2086 | DOI | MR

[Hof] Hoffmann T., “Discrete Amsler surfaces and a discrete Painlevé-III equation”, Discrete Integrable Geometry and Physics (Vienna, 1996), Oxford Lecture Ser. Math. Appl., 16, eds. A. I. Bobenko, R. Seiler, Oxford Univ. Press, New York, 1999, 83–96 | MR | Zbl

[M] Matthes D., Discrete surfaces and coordinate systems: approximation theorems and computation, PhD thesis published online at the Technical Univ. Berlin

[N] Nijhoff F. W., “Lax pair for the Adler (lattice Krichever–Novikov) system”, Phys. Lett. A, 297 (2002), 49–58 | DOI | MR | Zbl

[PP] Pinkall U., Polthier K., “Computing discrete minimal surfaces and their conjugates”, Experiment. Math., 2:1 (1993), 15–36 | MR | Zbl

[S] Sauer R., Differenzengeometrie, Springer-Verlag, Berlin–New York, 1970 | MR

[W] Wunderlich W., “Zur Differenzengeometrie der Flächen konstanter negativer Krümmung”, Sitzungsber. Österreich. Akad. Wiss. Math.-Nat. Kl. S.-B. IIa, 160 (1951), 39–77 | MR | Zbl