On the relative distribution of eigenvalues of exceptional Hecke operators and automorphic Laplacians
Algebra i analiz, Tome 17 (2005) no. 1, pp. 5-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2005_17_1_a0,
     author = {E. Balslev and A. Venkov},
     title = {On the relative distribution of eigenvalues of exceptional {Hecke} operators and automorphic {Laplacians}},
     journal = {Algebra i analiz},
     pages = {5--52},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2005_17_1_a0/}
}
TY  - JOUR
AU  - E. Balslev
AU  - A. Venkov
TI  - On the relative distribution of eigenvalues of exceptional Hecke operators and automorphic Laplacians
JO  - Algebra i analiz
PY  - 2005
SP  - 5
EP  - 52
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2005_17_1_a0/
LA  - en
ID  - AA_2005_17_1_a0
ER  - 
%0 Journal Article
%A E. Balslev
%A A. Venkov
%T On the relative distribution of eigenvalues of exceptional Hecke operators and automorphic Laplacians
%J Algebra i analiz
%D 2005
%P 5-52
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2005_17_1_a0/
%G en
%F AA_2005_17_1_a0
E. Balslev; A. Venkov. On the relative distribution of eigenvalues of exceptional Hecke operators and automorphic Laplacians. Algebra i analiz, Tome 17 (2005) no. 1, pp. 5-52. http://geodesic.mathdoc.fr/item/AA_2005_17_1_a0/

[1] Balslev E., Venkov A., “Spectral theory of Laplacians for Hecke groups with primitive character”, Acta Math., 186 (2001), 155–217 | DOI | MR | Zbl

[2] Venkov A. B., Spektralnaya teoriya avtomorfnykh funktsii, Tr. Mat. in-ta AN SSSR, 153, 1981, 172 pp. | MR | Zbl

[3] Akiyama S., Tanigawa Y., “The Selberg trace formula for modular correspondences”, Nagoya Math. J, 117 (1990), 93–123 | MR | Zbl

[4] Hejhal D. A., The Selberg trace formula for $\mathrm{PSL}(2\mathbb R)$, Vol. 2, Lecture Notes in Math., 1001, Springer-Verlag, Berlin, 1983 | MR | Zbl

[5] Strömbergsson A., The Selberg trace formula for modular correspondences, Licentiat thesis, Uppsala Univ., 1998; http://www.math.uu.se/~andreas/papers.html

[6] Conrey J. B., Xian-Jin Lie, On the trace of Hecke operators for Maass forms for congruence subgroups $\Gamma_0(w)$, Preprint | MR

[7] Bolte J., Grosche C., “Selberg trace formula for bordered Riemann surfaces”, Comm. Math. Phys., 163 (1994), 217–244 | DOI | MR | Zbl

[8] Faddeev L. D., “Razlozhenie po sobstvennym funktsiyam operatora Laplasa na fundamentalnoi oblasti diskretnoi gruppy na ploskosti Lobachevskogo”, Tr. mat. o-va, 17, 1967, 323–350 | MR | Zbl

[9] Luo W., “Nonvanishing of $L$-values and the Weyl law”, Ann. of Math. (2), 154 (2001), 477–502 | DOI | MR | Zbl

[10] Balslev E., Venkov A., “Correction to “Spectral theory of Laplacians for Hecke groups with primitive character””, Acta Math., 192 (2004), 1–3 | DOI | MR | Zbl