Bilipschitz equivalent Aleksandrov srfaces.~II
Algebra i analiz, Tome 16 (2004) no. 6, pp. 28-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2004_16_6_a1,
     author = {Yu. Burago},
     title = {Bilipschitz equivalent {Aleksandrov} {srfaces.~II}},
     journal = {Algebra i analiz},
     pages = {28--52},
     publisher = {mathdoc},
     volume = {16},
     number = {6},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2004_16_6_a1/}
}
TY  - JOUR
AU  - Yu. Burago
TI  - Bilipschitz equivalent Aleksandrov srfaces.~II
JO  - Algebra i analiz
PY  - 2004
SP  - 28
EP  - 52
VL  - 16
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2004_16_6_a1/
LA  - ru
ID  - AA_2004_16_6_a1
ER  - 
%0 Journal Article
%A Yu. Burago
%T Bilipschitz equivalent Aleksandrov srfaces.~II
%J Algebra i analiz
%D 2004
%P 28-52
%V 16
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2004_16_6_a1/
%G ru
%F AA_2004_16_6_a1
Yu. Burago. Bilipschitz equivalent Aleksandrov srfaces.~II. Algebra i analiz, Tome 16 (2004) no. 6, pp. 28-52. http://geodesic.mathdoc.fr/item/AA_2004_16_6_a1/

[AZ] Aleksandrov A. D., Zalgaller V. A., Dvumernye mnogoobraziya ogranichennoi krivizny, Tr. Mat. in-ta AN SSSR, 63, 1962, 262 pp. | MR | Zbl

[Вак] Bakelman I. Ya., “Chebyshevskie seti v mnogoobraziyakh ogranichennoi krivizny”, Tr. Mat. in-ta AN SSSR, 76, 1965, 124–129 | MR

[ВеВи] Belenkii A., Burago Yu., “Bilipshitsevo ekvivalentnye poverkhnosti Aleksandrova. I”, Algebra i analiz, 16:4 (2004), 24–40 | MR

[BL] Bonk M., Lang U., “Bi-Lipschitz parametrization of surfaces”, Math. Ann., 327 (2003), 135–169 | DOI | MR | Zbl

[В] Burago Yu., “Izometrichnoe vlozhenie mnogoobraziya ogranichennoi krivizny v evklidovo prostranstvo”, Uch. zap. Leningr. gos. ped. in-ta, 395, 1970, 48–86 | MR

[BZ] Burago Yu., Zalgaller V., “Realizatsiya razvertok v vide mnogogrannikov”, Vestn. Leningr. un-ta. Ser. mat. mekh. astronom., 1960, no. 2, 66–80 | MR | Zbl

[BZ1] Burago Yu., Zalgaller V., “Izometricheskie kusochno-lineinye pogruzheniya dvumernykh mnogoobrazii s poliedralnoi metrikoi v $\mathbb R^3$”, Algebra i analiz, 7:3 (1995), 76–95 | MR | Zbl

[I] Ivanov S. V., “Skhodimost po Gromovu–Khausdorfu i ob'emy mnogoobrazii”, Algebra i analiz, 9:5 (1997), 65–83 | MR | Zbl

[Р] Petersen P., “A finiteness theorem for metric spaces”, J. Differential Geom., 31 (1990), 387–395 | MR | Zbl

[Resh] Reshetnyak Yu. G., “Dvumernye mnogoobraziya ogranichennoi krivizny”, Geometriya – 4, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 70, VINITI, M., 1989, 7–189 | MR

[Resh1] Reshetnyak Yu. G., “Issledovanie mnogoobrazii ogranichennoi krivizny posredstvom izotermicheskikh koordinat”, Izv. Sib. otd. AN SSSR, 1959, no. 10, 15–28 | Zbl

[Sh] Shioya T., “The limit spaces of two-dimensional manifolds with uniformly bounded integral curvature”, Trans. Amer. Math. Soc., 351 (1999), 1765–1801 | DOI | MR | Zbl