Estimates of deviation from the exact solutions for some boundary-value problems with incompressibilily condition
Algebra i analiz, Tome 16 (2004) no. 5, pp. 124-161.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2004_16_5_a5,
     author = {S. I. Repin},
     title = {Estimates of deviation from the exact solutions for some boundary-value problems with incompressibilily condition},
     journal = {Algebra i analiz},
     pages = {124--161},
     publisher = {mathdoc},
     volume = {16},
     number = {5},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2004_16_5_a5/}
}
TY  - JOUR
AU  - S. I. Repin
TI  - Estimates of deviation from the exact solutions for some boundary-value problems with incompressibilily condition
JO  - Algebra i analiz
PY  - 2004
SP  - 124
EP  - 161
VL  - 16
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2004_16_5_a5/
LA  - ru
ID  - AA_2004_16_5_a5
ER  - 
%0 Journal Article
%A S. I. Repin
%T Estimates of deviation from the exact solutions for some boundary-value problems with incompressibilily condition
%J Algebra i analiz
%D 2004
%P 124-161
%V 16
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2004_16_5_a5/
%G ru
%F AA_2004_16_5_a5
S. I. Repin. Estimates of deviation from the exact solutions for some boundary-value problems with incompressibilily condition. Algebra i analiz, Tome 16 (2004) no. 5, pp. 124-161. http://geodesic.mathdoc.fr/item/AA_2004_16_5_a5/

[1] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, 2-e izd., Nauka, M., 1970 | MR

[2] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[3] Ladyzhenskaya O. A., “O modifikatsiyakh uravnenii Nave–Stoksa dlya bolshikh gradientov skorostei”, Zap. nauch. semin. LOMI, 7, 1968, 126–154 | Zbl

[4] Ladyzhenskaya O. A., Solonnikov V. A., “O nekotorykh zadachakh vektornogo analiza i obobschennykh postanovkakh kraevykh zadach dlya uravnenii Nave–Stoksa”, Zap. nauch. semin. LOMI, 59, 1976, 81–116 | Zbl

[5] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[6] Oganesyan L. A., Rukhovets L. A., “Issledovanie skorosti skhodimosti variatsionno-raznostnykh skhem dlya ellipticheskikh uravnenii vtorogo poryadka v dvumernoi oblasti s gladkoi granitsei”, Zh. vychisl. mat. i mat. fiz., 9:5 (1969), 1102–1120 | Zbl

[7] Olshanskii M. A., Chizhonkov E. V., “O nailuchshei konstante v $inf$-$sup$-uslovii dlya vytyanutykh pryamougolnykh oblastei”, Mat. zametki, 67:3 (2000), 387–396 | MR

[8] Repin S. I., “Aposteriornye otsenki pogreshnosti priblizhennykh reshenii variatsionnykh zadach s silno vypuklymi funktsionalami”, Probl. mat. anal., 17, SPbGU, SPb., 1997, 199–226

[9] Repin S. I., “Otsenki pogreshnosti nekotorykh dvumernykh modelei teorii uprugosti”, Probl. mat. anal., 22, SPbGU, SPb., 2001, 178–196

[10] Repin S. I., “Aposteriornye otsenki tochnosti variatsionnykh, metodov dlya zadach s nevypuklymi funktsionalami”, Algebra i analiz, 11:4 (1999), 151–182 | MR | Zbl

[11] Repin S. I., “Dvustoronnie otsenki otkloneniya ot tochnogo resheniya dlya ravnomerno ellipticheskikh uravnenii”, Tr. S.-Peterburg. mat. o-va, 9, 2001, 148–179 | MR | Zbl

[12] Astarita G., Marrucci G., Principles of non Newtonian fluid mechanics, McGraw Hill, London, 1974

[13] Ainsworth M., Oden J. T., “A posteriori error estimators for the Stokes and Oseen equations”, SIAM J. Numer. Anal., 34:1 (1997), 228–245 | DOI | MR | Zbl

[14] Ainsworth M., Oden J. T., A posteriori error estimation in finite element analysis, Wiley, New York, 2000 | MR | Zbl

[15] Arnold D. N., Brezzi F., Fortin M., “A stable finite element for the Stokes equations”, Calcolo, 21 (1984):4 (1985), 337–344 | DOI | MR

[16] Babuška I., “The finite element method with Lagrangian multipliers”, Numer. Math., 20 (1973), 179–192 | DOI | MR | Zbl

[17] Babuška I., Rheinboldt W. C., “Error estimates for adaptive finite element computations”, SIAM J. Numer. Anal., 15 (1978), 736–754 | DOI | MR | Zbl

[18] Babuška I., Strouboulis T., The finite element method and its reliability, Clarendon Press, New York, 2001 | MR | Zbl

[19] Bank R. E., Welfert B. D., “A posteriori error estimates for the Stokes problem”, SIAM J. Numer. Anal., 28:3 (1991), 591–623 | DOI | MR | Zbl

[20] Bermudez A., Duran R., Rodriguez R., “Finite element analysis of compressible and incompressible fluid-solid systems”, Math. Comp., 67:221 (1998), 111–136 | DOI | MR | Zbl

[21] Bramble J. H., “A proof of the inf-sup condition for the Stokes equations on Lipschitz domains”, Math. Models Methods Appl. Sci., 13:3 (2003), 361–371 | DOI | MR | Zbl

[22] Brezzi F., “On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers”, Rev. Franc. Automat. Inform. Rech. Operat., 8:R-2 (1974), 129–151 | MR | Zbl

[23] Brezzi F., Douglas J., “Stabilized mixed methods for the Stokes problem”, Numer. Math., 53:1–2 (1988), 225–235 | DOI | MR | Zbl

[24] Brezzi F., Fortin M., Mixed and hybrid finite element methods, Springer Ser. Comput. Math., 15, Springer-Verlag, New York, 1991 | MR | Zbl

[25] Carstensen C., Bartels S., “Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. I. Low order conforming, nonconforming, and mixed FEM”, Math. Comp., 71:239 (2002), 945–969 | DOI | MR | Zbl

[26] Carstensen C., Funken S. A., “Constants in Clément-interpolation error and residual based a posteriori error estimates in finite element methods”, East-West J. Numer. Anal., 8:3 (2000), 153–175 | MR | Zbl

[27] Carstensen C., Funken S. A., “A posteriori error control in low-order finite element discretizations of incompressible stationary flow problems”, Math. Comp., 70:236 (2001), 1353–1381, electronic | DOI | MR | Zbl

[28] Chorin A. J., “On the convergence of discrete approximations to the Navier–Stokes equations”, Math. Comp., 23 (1969), 341–353 | DOI | MR | Zbl

[29] Clément Ph., “Approximation by finite element functions using local regularization”, Rev. Franc. Automat. Inform. Rech. Operat., 9:R-2 (1975), 77–84 | MR | Zbl

[30] Dari E., Duran R., Padra C., “Error estimators for nonconforming finite element approximations of the Stokes problem”, Math. Comp., 64:211 (1995), 1017–1033 | DOI | MR | Zbl

[31] E. Weinan, Liu J. G., “Projection method. I. Convergence and numerical boundary layers”, SIAM J. Numer. Anal., 32:4 (1995), 1017–1057 | DOI | MR | Zbl

[32] Ekeland I., Temam R., Convex analysis and variational problems, Stud. Math. Appl., 1, North-Holland, Amsterdam–Oxford, 1976 | MR | Zbl

[33] Fuchs M., Seregin G. A., Variational methods for problems from plasticity theory and for generalized Newtonian fluids, Lecture Notes in Math., 1749, Springer-Verlag, Berlin, 2000 | MR | Zbl

[34] Girault V., Raviart P. A., Finite element approximation of the Navier–Stokes equations, Lecture Notes in Math., 749, Springer-Verlag, Berlin–New York, 1979 | MR | Zbl

[35] Heywood J. G., Rannacher R., “Finite element approximation of the nonstationary Navier–Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization”, SIAM J. Numer. Anal., 19 (1982), 275–311 | DOI | MR | Zbl

[36] Heywood J. G., Rannacher R., “Finite-element approximation of the nonstationary Navier–Stokes problem. IV. Error analysis for second-order time discretization”, SIAM J. Numer. Anal., 27 (1990), 353–384 | DOI | MR

[37] Johnson C., Rannacher R., On error control in computational fluid dynamics, Preprint no. 1994-07, Math. Chalmers Univ. of Technology, Goteborg, 1994

[38] Johnson C., Rannacher R., Boman M., “Numerics and hydrodynamic stability: toward error control in computational fluid dynamics”, SIAM J. Numer. Anal., 32 (1995), 1058–1079 | DOI | MR | Zbl

[39] Kobelkov G. M., Olshanskii M., “Effective preconditioning of Uzawa type schemes for a generalized Stokes problem”, Numer. Math., 86 (2000), 443–470 | DOI | MR | Zbl

[40] Ladyzhenskaya O. A., “O nekotorykh nelineinykh zadachakh teorii sploshnykh sred”, Mezhdunarodnyi kongress matematikov, Trudy (Moskva, 1966), Mir, M., 1968, 560–573

[41] Malek J., Nečas J., Rokyta M., Ružička M., Weak and measure-valued solutions to evolutionary PDES, Appl. Math. Math. Comput., 13, Chapman and Hall, London, 1996 | MR | Zbl

[42] Mosolov P. P., Myasnikov V. P., Mekhanika zhestkoplasticheskikh sred, Nauka, M., 1981 | MR | Zbl

[43] Oden J. T., Wu W, Ainsworth M., “An a posteriori error estimate for finite element approximations of the Navier–Stokes equations”, Comput. Methods. Appl. Mech. Engrg., 111 (1994), 185–202 | DOI | MR | Zbl

[44] Padra C., “A posteriori error estimators for nonconforming approximation of some quasi-Newtonian flows”, SIAM J. Numer. Anal., 34 (1997), 1600–1615 | DOI | MR | Zbl

[45] Rannacher R., “Numerical analysis of the Navier–Stokes equations”, Appl. Math., 38 (1993), 361–380 | MR | Zbl

[46] Rannacher R., “Finite element methods for the incompressible Navier–Stokes equations”, Fundamental Directions in Mathematical Fluid Mechanics, eds. P. Galdi, J. H. Heywood, R. Rannacher, Birkhäuser, Basel, 2000, 191–293 | MR | Zbl

[47] Repin S., “A posteriori error estimation for nonlinear variational problems by duality theory”, Zap. nauch. semin. POMI, 243, 1997, 201–214 | MR | Zbl

[48] Repin S., “A posteriori error estimation for variational problems with uniformly convex functionals”, Math. Comp., 69:230 (2000), 481–500 | DOI | MR | Zbl

[49] Repin S., “A unified approach to a posteriori error estimation based on duality error majorants”, Math. Comput. Simulation, 50 (1999), 305–321 | DOI | MR

[50] Repin S., “Estimates of deviations from exact solutions of elliptic variational inequalities”, Zap. nauch. semin. POMI, 271, 2000, 188–203 | MR | Zbl

[51] Repin S., “A posteriori estimates for the Stokes problem”, Zap. nauch. semin. POMI, 259, 1999, 195–211 ; J. Math. Sci. (New York), 109:5 (2002), 1950–1964 | MR | Zbl | DOI

[52] Repin S., “Estimates of deviations for generalized Newtonian fluids”, Zap. nauch. semin. POMI, 288, 2002, 178–203 | MR | Zbl

[53] Repin S., “Estimates of deviations from exact solutions of initial-boundary value problem for the heat equation”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 13 (2002), 121–133 | MR | Zbl

[54] Repin S., Sauter S., Smolianski A., A posteriori error estimates for the Dirichlet problem with account of the error in the approximation of boundary conditions, Preprint no. 03-2002, Univ. of Zurich, Inst. of Math., 2002 ; Computing, 70:3 (2003), 205–233 | Zbl | MR | Zbl

[55] Repin S., Sauter S., Smolianski A., “A posteriori error estimation for the Poisson equation with mixed Dirichlet/Neumann boundary conditions”, J. Comput. Appl. Math., 164–165 (2004), 601–612 | DOI | MR | Zbl

[56] Shen J., “On error estimates of the projection methods for the Navier–Stokes equations: second-order schemes”, Math. Comp., 65:215 (1996), 1039–1065 | DOI | MR | Zbl

[57] Temam R., Navier–Stokes equations. Theory and numerical analysis, Stud. Math. Appl., 2, North-Holland, Amsterdam–New York, 1979 | MR | Zbl

[58] Verfürth R., A review of a posteriori error estimation and adaptive mesh-refinement techniques, Wiley, Teubner, New York, 1996 | Zbl

[59] Verfürth R., “A posteriori error estimators for the Stokes equations”, Numer. Math., 55 (1989), 309–325 | DOI | MR | Zbl

[60] Verfürth R., “A posteriori error estimators for the Stokes equations. II. Nonconforming discretizations”, Numer. Math., 60 (1991), 235–249 | DOI | MR | Zbl

[61] Wahlbin L. B., Superconvergence in Galerkin finite element methods, Lecture Notes in Math., 1605, Springer-Verlag, Berlin, 1995 | MR | Zbl

[62] Zlamal M., “Some superconvergence results in the finite element method”, Mathematical Aspects of Finite Element Methods, Proc. Conf. (Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), Lecture Notes in Math., 606, eds. A. Dold, B. Eckmann, Springer, Berlin, 1977 | MR

[63] Zienkiewicz O. C., Zhu J. Z., “A simple error estimator and adaptive procedure for practical engineering analysis”, Internat. J. Numer. Methods Engrg., 24 (1987), 337–357 | DOI | MR | Zbl