Twisted (closed) braids
Algebra i analiz, Tome 16 (2004) no. 5, pp. 59-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2004_16_5_a2,
     author = {A. V. Malyutin},
     title = {Twisted (closed) braids},
     journal = {Algebra i analiz},
     pages = {59--91},
     publisher = {mathdoc},
     volume = {16},
     number = {5},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2004_16_5_a2/}
}
TY  - JOUR
AU  - A. V. Malyutin
TI  - Twisted (closed) braids
JO  - Algebra i analiz
PY  - 2004
SP  - 59
EP  - 91
VL  - 16
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2004_16_5_a2/
LA  - ru
ID  - AA_2004_16_5_a2
ER  - 
%0 Journal Article
%A A. V. Malyutin
%T Twisted (closed) braids
%J Algebra i analiz
%D 2004
%P 59-91
%V 16
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2004_16_5_a2/
%G ru
%F AA_2004_16_5_a2
A. V. Malyutin. Twisted (closed) braids. Algebra i analiz, Tome 16 (2004) no. 5, pp. 59-91. http://geodesic.mathdoc.fr/item/AA_2004_16_5_a2/

[1] Birman J. S., Braids, links, and mapping class groups, Ann. of Math. Stud., 82, Princeton Univ. Press, Princeton, NJ, 1974 | MR

[2] Brouwer L. E. J., “Über die periodischen Transformationen der Kugel”, Math. Ann., 80 (1919), 39–41 | DOI | MR | Zbl

[3] Casson A., Bleiler S., Automorphisms of surfaces after Nielsen and Thurston, London Math. Soc. Stud. Texts, 9, Cambridge Univ. Press, Cambridge, 1988 | MR | Zbl

[4] Constantin A., Kolev B., “The theorem of Kerékjártó on periodic homeomorphisms of the disc and the sphere”, Enseign. Math. (2), 40, 1994, 193–204 | MR | Zbl

[5] Dehornoy P., Dynnikov I., Rolfsen D., Wiest B., Why are braids orderabte?, Panor. Synthèses, 14, Soc. Math. France, Paris, 2002 | MR | Zbl

[6] Faiziev V. A., “The stability of the equation $f(xy)-f(x)-f(y)=0$ on groups”, Acta Math. Univ. Comenian. (N.S.), 69:1 (2000), 127–135 | MR | Zbl

[7] Ghys É, “Groups acting on the circle”, Enseign. Math. (2), 47, 2001, 329–407 | MR | Zbl

[8] Grigorchuk R., “Some results on bounded cohomology”, Combinatorial and Geometric Group Theory (Edinburgh, 1993), London Math. Soc. Lecture Note Ser., 204, Cambridge Univ. Press, Cambridge, 1995, 111–163 | MR | Zbl

[9] von Kerékjártó B., “Über die periodischen Transformationen der Kreisscheibe und der Kugelfläche”, Math. Ann., 80 (1919), 36–38 | DOI | MR | Zbl

[10] Kirby R. (ed.), “Problems in low-dimensional topology”, Geometric Topology, pt. 2 (Athens, GA, 1993), AMS/IP Stud. Adv. Math., 2, Amer. Math. Soc., Providence, RI, 1997, 35–473 | MR | Zbl

[11] Malyutin A. V., “Uporyadocheniya na gruppakh kos, operatsii nad zamknutymi kosami i podtverzhdenie gipotez Menasko”, Zap. nauch. semin. POMI, 267, 2000, 163–169 | Zbl

[12] Malyutin A. V., “Bystrye algoritmy raspoznavaniya i sravneniya kos”, Zap. nauch. semin. POMI, 279, 2001, 197–217 | Zbl

[13] Malyutin A. V., Netsvetaev N. Yu., “Poryadok Deornua na gruppe kos i preobrazovaniya zamknutykh kos”, Algebra i analiz, 15:3 (2003), 170–187 | MR | Zbl

[14] Short H., Wiest B., “Orderings of mapping class groups after Thurston”, Enseign. Math. (2), 46 (2000), 279–312 | MR | Zbl

[15] Thurston W. P., “On the geometry and dynamics of diffeomorphisms of surfaces”, Bull. Amer. Math. Soc. (N.S.), 19 (1988), 417–431 | DOI | MR | Zbl

[16] Fathi A., Laudenbach F., Poenaru V. (eds.), Travaux de Thurston sur les surfaces, Séminaire Orsay, Astérisque, 66–67, Soc. Math. France, Paris, 1979 | MR