Double singular integrals: interpolation and correction
Algebra i analiz, Tome 16 (2004) no. 5, pp. 1-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2004_16_5_a0,
     author = {D. S. Anisimov and S. V. Kislyakov},
     title = {Double singular integrals: interpolation and correction},
     journal = {Algebra i analiz},
     pages = {1--33},
     publisher = {mathdoc},
     volume = {16},
     number = {5},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2004_16_5_a0/}
}
TY  - JOUR
AU  - D. S. Anisimov
AU  - S. V. Kislyakov
TI  - Double singular integrals: interpolation and correction
JO  - Algebra i analiz
PY  - 2004
SP  - 1
EP  - 33
VL  - 16
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2004_16_5_a0/
LA  - ru
ID  - AA_2004_16_5_a0
ER  - 
%0 Journal Article
%A D. S. Anisimov
%A S. V. Kislyakov
%T Double singular integrals: interpolation and correction
%J Algebra i analiz
%D 2004
%P 1-33
%V 16
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2004_16_5_a0/
%G ru
%F AA_2004_16_5_a0
D. S. Anisimov; S. V. Kislyakov. Double singular integrals: interpolation and correction. Algebra i analiz, Tome 16 (2004) no. 5, pp. 1-33. http://geodesic.mathdoc.fr/item/AA_2004_16_5_a0/

[1] Bourgain J., “Some consequences of Pisier's approach to interpolation”, Israel J. Math., 77 (1992), 165–185 | DOI | MR | Zbl

[2] Coifman R. R., Fefferman Ch., “Weighted norm inequalities for maximal functions and singular integrals”, Studia Math., 51:3 (1974), 241–250 | MR | Zbl

[3] Coifman R. R., Weiss G., “Extensions of Hardy spaces and their use in analysis”, Bull. Amer. Math. Soc., 83:4 (1977), 569–645 | DOI | MR | Zbl

[4] Dynkin E. M., “Metody teorii singulyarnykh integralov. II. Teoriya Litlvuda–Peli i ee prilozheniya”, Kommutativnyi garmonicheskii analiz – 4, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 42, VINITI, M., 1989, 105–198 | MR

[5] García-Cuerva J., Rubio de Francia J. L., Weighted norm inequalities and related topics, Notas Math., vol. 104, North-Holland Math. Stud., 116, North-Holland, Amsterdam,, 1985 | MR | Zbl

[6] Jones P. W., Müller P. F. X., Conditioned Brownian motion and multipliers into $SL^\infty$, Preprint, 2003 | MR

[7] Kislyakov S. V., “Kolichestvennyi aspekt teorem ob ispravlenii”, Zap. nauch. semin. LOMI, 92, 1979, 182–191 | MR | Zbl

[8] Kislyakov S. V., “Fourier coefficients of continuous functions and a class of multipliers”, Ann. Inst. Fourier (Grenoble), 38:2 (1988), 147–183 | MR | Zbl

[9] Kislyakov S. V., “A sharp correction theorem”, Studia Math., 113 (1995), 177–196 | MR | Zbl

[10] Kislyakov S. V., “Esche neskolko prostranstv, dlya kotorykh veren analog teoremy Grotendika”, Algebra i analiz, 7:1 (1995), 62–91 | MR | Zbl

[11] Kislyakov S. V., “Interpolation of $H^p$-spaces: some recent developments”, Function Spaces, Interpolation Spaces, and Related Topics (Haifa, 1995), Israel Math. Conf. Proc., 13, Bar-Ilan Univ., Ramat Gan, 1999, 102–140 | MR | Zbl

[12] Kislyakov S. V., “On BMO-regular couples of lattices of measurable functions”, Studia Math., 159 (2003), 277–290 | DOI | MR | Zbl

[13] Kislyakov S. V., Xu Quan Hua, “Interpolation of weighted and vector-valued Hardy spaces”, Trans. Amer. Math. Soc., 343:1 (1994), 1–34 | DOI | MR | Zbl

[14] Kislyakov S. V., Shu Kvankhua, “Veschestvennaya interpolyatsiya i singulyarnye integraly”, Algebra i analiz, 8:4 (1996), 75–109 | MR | Zbl

[15] Pisier G., “Interpolation between $H^p$-spaces and noncommutative generalizations, I”, Pacific J. Math., 155 (1992), 341–368 | MR | Zbl

[16] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[17] Vasyunin V. I., “Tochnaya konstanta v obratnom neravenstve Geldera dlya makenkhauptovskikh vesov”, Algebra i analiz, 15:1 (2003), 73–117 | MR | Zbl

[18] Wolff T., “A note on interpolation spaces”, Harmonic Analysis (Minneapolis, Minn., 1981), Lecture Notes in Math., 908, Springer-Verlag, Berlin–New York, 1982, 199–204 | MR

[19] Xu Qun Hua, “Some properties of the quotient space $L^1(\mathbb T^n)/H^1(D^n)$”, Illinois J. Math., 37:3 (1993), 437–454 | MR