Bi-Lipschitz-equivalent Aleksandrov surfaces.~I
Algebra i analiz, Tome 16 (2004) no. 4, pp. 24-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2004_16_4_a1,
     author = {A. S. Belen'kii and Yu. D. Burago},
     title = {Bi-Lipschitz-equivalent {Aleksandrov} {surfaces.~I}},
     journal = {Algebra i analiz},
     pages = {24--40},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2004_16_4_a1/}
}
TY  - JOUR
AU  - A. S. Belen'kii
AU  - Yu. D. Burago
TI  - Bi-Lipschitz-equivalent Aleksandrov surfaces.~I
JO  - Algebra i analiz
PY  - 2004
SP  - 24
EP  - 40
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2004_16_4_a1/
LA  - ru
ID  - AA_2004_16_4_a1
ER  - 
%0 Journal Article
%A A. S. Belen'kii
%A Yu. D. Burago
%T Bi-Lipschitz-equivalent Aleksandrov surfaces.~I
%J Algebra i analiz
%D 2004
%P 24-40
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2004_16_4_a1/
%G ru
%F AA_2004_16_4_a1
A. S. Belen'kii; Yu. D. Burago. Bi-Lipschitz-equivalent Aleksandrov surfaces.~I. Algebra i analiz, Tome 16 (2004) no. 4, pp. 24-40. http://geodesic.mathdoc.fr/item/AA_2004_16_4_a1/

[AZ] Aleksandrov A. D., Zalgaller V. A., “Dvumernye mnogoobraziya ogranichennoi krivizny”, Tr. Mat. in-ta AN SSSR, 63, 1962, 3–262 | MR | Zbl

[Вак] Bakelman I. Ya., “Chebyshevskie seti v mnogoobraziyakh ogranichennoi krivizny”, Tr. Mat. in-ta AN SSSR, 76, 1965, 124–129 | MR

[ВВ] Burago Yu. D., Buyalo S. V., “Metriki ogranichennoi sverkhu krivizny na dvumernykh poliedrakh. II”, Algebra i analiz, 10:4 (1998), 62–112 | MR | Zbl

[BL] Bonk M., Lang U., “Li-Lipschitz parametrization of surfaces”, Math. Ann., 327 (2003), 135–169 | DOI | MR | Zbl

[Gr] Grieser D., “Quasiisometry of singular metrics”, Houston J. Math., 28 (2002), 741–752, electronic | MR | Zbl

[Hub] Huber A., “On subharmonic functions and differential geometry in the large”, Comment. Math. Helv., 32 (1957), 13–72 | DOI | MR | Zbl

[Resh] Reshetnyak Yu. G., “Dvumernye mnogoobraziya ogranichennoi krivizny”, Geometriya – 4. Neregulyarnaya rimanova geometriya, Itogi nauki i tekhn. Ser. Sovrem, probl. mat. Fundam. napravleniya, 70, VINITI, M., 1989, 7–189 | MR

[RS] Rurk K., Sanderson B., Vvedenie v kusochno lineinuyu topologiyu, Mir, M., 1974 | MR

[Ver] Verner A., “Uslovie konechnosvyaznosti polnykh nezamknutykh poverkhnostei”, Uch. zap. Leningr. gos. ped. in-ta im. A. I. Gertsena, 395, 1970, 100–131 | MR