Adiabatic asymptotics of the reflection coefficient
Algebra i analiz, Tome 16 (2004) no. 3, pp. 1-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2004_16_3_a0,
     author = {V. S. Buslaev and M. V. Buslaeva and A. Grigis},
     title = {Adiabatic asymptotics of the reflection coefficient},
     journal = {Algebra i analiz},
     pages = {1--23},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2004_16_3_a0/}
}
TY  - JOUR
AU  - V. S. Buslaev
AU  - M. V. Buslaeva
AU  - A. Grigis
TI  - Adiabatic asymptotics of the reflection coefficient
JO  - Algebra i analiz
PY  - 2004
SP  - 1
EP  - 23
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2004_16_3_a0/
LA  - ru
ID  - AA_2004_16_3_a0
ER  - 
%0 Journal Article
%A V. S. Buslaev
%A M. V. Buslaeva
%A A. Grigis
%T Adiabatic asymptotics of the reflection coefficient
%J Algebra i analiz
%D 2004
%P 1-23
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2004_16_3_a0/
%G ru
%F AA_2004_16_3_a0
V. S. Buslaev; M. V. Buslaeva; A. Grigis. Adiabatic asymptotics of the reflection coefficient. Algebra i analiz, Tome 16 (2004) no. 3, pp. 1-23. http://geodesic.mathdoc.fr/item/AA_2004_16_3_a0/

[1] Marchenko V. A., Spektralnaya teoriya operatorov Shturma–Liuvillya, Nauk. dumka, Kiev, 1972 | MR | Zbl

[2] Yakubovich V. A., Starzhinskii V. M., Lineinye differentsialnye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya, Nauka, M., 1972 | MR

[3] Buslaev V. S., “Adiabaticheskoe vozmuschenie periodicheskogo potentsiala”, Teor. i mat. fiz., 58:2 (1984), 233–243 | MR | Zbl

[4] Buslaev V. S., Dmitrieva L. A., “Elokhovskii elektron vo vneshnem pole”, Algebra i analiz, 1:2 (1989), 1–29 | MR | Zbl

[5] Buslaev V., Grigis A., “Imaginary parts of Stark–Wannier resonances”, J. Math. Phys., 39:5 (1998), 2520–2550 | DOI | MR | Zbl

[6] Buslaev V., Grigis A., “Turning points for adiabatically perturbed periodic equations”, J. Anal. Math., 84 (2001), 67–143 | DOI | MR | Zbl

[7] Buslaev V. S., “Kvaziklassicheskoe priblizhenie dlya uravnenii s periodicheskimi koeffitsientami”, Uspekhi mat. nauk, 42:6(258) (1987), 77–98 | MR | Zbl