Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2004_16_2_a4, author = {S. E. Stepanov and I. G. Shandra}, title = {Garmonic diffeomorphisms of manifolds}, journal = {Algebra i analiz}, pages = {154--171}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2004_16_2_a4/} }
S. E. Stepanov; I. G. Shandra. Garmonic diffeomorphisms of manifolds. Algebra i analiz, Tome 16 (2004) no. 2, pp. 154-171. http://geodesic.mathdoc.fr/item/AA_2004_16_2_a4/
[1] Eells J., Lemaire L., “A report on harmonic maps”, Bull. London Math. Soc., 10 (1978), 1–68 | DOI | MR | Zbl
[2] Eells J., Lemaire L., “Another report on harmonic maps”, Bull. London Math. Soc., 20 (1988), 385–584 | DOI | MR
[3] Davidov I., Sergeev A. G., “Tvistornye prostranstva i garmonicheskie otobrazheniya”, Uspekhi mat. nauk, 48:3(291) (1993), 3–96 | MR | Zbl
[4] Eizenkhart L. P., Rimanova geometriya, IL, M., 1948
[5] Yano K., Differential geometry on complex and almost complex spaces, Internat. Ser. Monogr. in Pure Appl. Math., 49, Pergamon Press, New York, 1965 | MR
[6] Sinyukov H. S., Geodezicheskie otobrazheniya rimanovykh prostranstv, Nauka, M., 1979 | MR | Zbl
[7] Yano K., The theory of Lie derivatives and its applications, North-Holland, Amsterdam, 1957 | MR | Zbl
[8] Kobayasi Sh., Gruppy preobrazovanii v differentsialnoi geometrii, Nauka, M., 1986 | MR
[9] Wu H., The Bochner technique in differential geometry, Harvard Acad. Publ., London, 1987 | MR
[10] Stepanov S. E., “The classification of harmonic diffeomorphisms”, The 5-th International Conference on Geometry and Applications, Abstracts (August 24–29, 2001, Varna), Union of Bulgarian Mathematicians, Sofia, 2001, 55
[11] Milnor Dzh., Teoriya Morsa, Mir, M., 1965 | MR
[12] Stepanov S. E., “On the global theory of some classes of mappings”, Ann. Global Anal. Geom., 13 (1995), 239–249 | DOI | MR | Zbl
[13] Narasimkhan P., Analiz na deistvitelnykh i kompleksnykh mnogoobraziyakh, Mir, M., 1971 | Zbl
[14] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 2, Nauka, M., 1981
[15] Gray A., Hervella L. M., “The sixteen classes of almost Hermitian manifolds and their linear invariants”, Ann. Math. Pura Appl. (4), 123 (1980), 35–58 | DOI | MR | Zbl
[16] Friedlander L., Hsiung Ch.-Ch., “A certain class of almost Hermitian manifolds”, Tensor (N.S.), 48 (1989), 252–263 | MR
[17] Gray A., “Nearly Kähler manifolds”, J. Differential Geom., 4 (1970), 283–309 | MR | Zbl
[18] Stepanov S. E., “O gruppovom podkhode k izucheniyu uravnenii Einshteina i Maksvella”, Teor. i mat. fiz., 111:1 (1997), 32–43 | MR | Zbl
[19] Besse A., Mnogoobraziya Einshteina, Mir, M., 1990 | MR | Zbl
[20] Kramer D. i dr., Tochnye resheniya uravnenii Einshteina, Energoizdat, M., 1982 | MR
[21] Nijenhuis A., “A note on first integrals of geodesies”, Nederl. Akad. Wetensch. Proc. Ser. A 70, 29:2 (1967), 141–145 | MR
[22] Stepanov S. E., “O primenenii odnoi teoremy P. A. Shirokova v tekhnike Bokhnera”, Izv. vuzov. Mat., 1996, no. 9, 53–59 | Zbl
[23] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981
[24] Yano K., Bokhner S., Krivizna i chisla Betti, IL, M., 1957