Topological and geometric properties of graph-manifolds
Algebra i analiz, Tome 16 (2004) no. 2, pp. 3-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2004_16_2_a0,
     author = {S. V. Buyalo and P. V. Svetlov},
     title = {Topological and geometric properties of graph-manifolds},
     journal = {Algebra i analiz},
     pages = {3--68},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2004_16_2_a0/}
}
TY  - JOUR
AU  - S. V. Buyalo
AU  - P. V. Svetlov
TI  - Topological and geometric properties of graph-manifolds
JO  - Algebra i analiz
PY  - 2004
SP  - 3
EP  - 68
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2004_16_2_a0/
LA  - ru
ID  - AA_2004_16_2_a0
ER  - 
%0 Journal Article
%A S. V. Buyalo
%A P. V. Svetlov
%T Topological and geometric properties of graph-manifolds
%J Algebra i analiz
%D 2004
%P 3-68
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2004_16_2_a0/
%G ru
%F AA_2004_16_2_a0
S. V. Buyalo; P. V. Svetlov. Topological and geometric properties of graph-manifolds. Algebra i analiz, Tome 16 (2004) no. 2, pp. 3-68. http://geodesic.mathdoc.fr/item/AA_2004_16_2_a0/

[В1] Buyalo S. V., “Kollapsiruyuschie mnogoobraziya nepolozhitelnoi krivizny. I, II”, Algebra i analiz, 1:5 (1989), 74–94 ; 6, 70–97 | MR | Zbl | MR | Zbl

[В2] Buyalo S. V., “Metriki nepolozhitelnoi krivizny na graf-mnogoobraziyakh i elektromagnitnye polya na grafakh”, Zap. nauch. semin. POMI, 280, 2001, 28–72 | Zbl

[ВК1] Buyalo S. V., Kobelskii V. L., “Geometrizatsiya graf-mnogoobrazii. I. Konformnaya geometrizatsiya”, Algebra i analiz, 7:2 (1995), 3–45 | MR | Zbl

[ВК2] Buyalo S. V., Kobelskii V. L., “Geometrizatsiya graf-mnogoobrazii. II. Izometricheskaya geometrizatsiya”, Algebra i analiz, 7:3 (1995), 96–117 | MR | Zbl

[ВКЗ] Buyalo S. V., Kobelskii V. L., “Geometrizatsiya beskonechnykh graf-mnogoobrazii”, Algebra i analiz, 8:3 (1996), 56–77 | MR

[ВК4] Buyalo S. V., Kobelskii V. L., “Obobschennye graf-mnogoobraziya nepolozhitelnoi krivizny”, Algebra i analiz, 11:2 (1999), 64–87 | MR | Zbl

[СЕ] Cheeger J., Ebin D., Comparison theorems in Riemannian geometry, North-Holland Math. Library, 9, North-Holland Publishing Co., Amsterdam-Oxford, 1975 | MR | Zbl

[E] Eberlein P., “Lattices in spaces of nonpositive curvature”, Ann. of Math. (2), 111 (1980), 435–476 | DOI | MR | Zbl

[GW] Gromoll D., Wolf J. A., “Some relations between the metric structure and the algebraic structure of the fundamental group in manifolds of nonpositive curvature”, Bull. Amer. Math. Soc., 77 (1971), 545–552 | DOI | MR | Zbl

[JS] Jaco W. H., Shalen P. B., Seifert fibered spaces in 3-manifolds, Mem. Amer. Math. Soc., 21, no. 220, 1979 | MR

[JLLP] Jacques A., Lenormand C., Lentin A., Perrot J.-F., “Un résultat extrémal en théorie des permutations”, C. R. Acad. Sci. Paris Sér. A-B, 266 (1968), A446–A448 | MR

[J] Johannson K., Homotopy equivalences of 3-manifolds with boundaries, Lecture Notes in Math., 761, Springer-Verlag, Berlin–New York, 1979 | MR | Zbl

[KL] Kapovich M., Leeb B., “Actions of discrete groups on nonpdsitively curved spaces”, Math. Ann., 306 (1996), 341–352 | DOI | MR | Zbl

[L] Leeb B., “3-manifolds with (out) metrics of nonpositive curvature”, Invent. Math., 122 (1995), 277–289 | DOI | MR | Zbl

[LW] Luecke J., Wu Y., “Relative Euler number and finite covers of graph manifolds”, Geometric Topology (Athens, GA, 1993), AMS/IP Stud. Adv. Math., 2, Amer. Math. Soc., Providence, RI, 1997, 80–103 | MR | Zbl

[LY] Lawson H. B., Yau S. T., “Compact manifolds of nonpositive curvature”, J. Differential Geom., 7 (1972), 211–228 | MR | Zbl

[N1] Neumann W. D., “A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves”, Trans. Amer. Math. Soc., 268 (1981), 299–344 | DOI | MR

[N2] Neumann W. D., “Commensurability and virtual fibration for graph manifolds”, Topology, 36 (1997), 355–378 | DOI | MR | Zbl

[N3] Neumann W. D., “Immersed and virtually embedded $\pi_1$-injective surfaces in graph manifolds”, Algebr. Geom. Topol., 1 (2001), 411–426, electronic | DOI | MR | Zbl

[RW] Rubinstein J. H., Wang S., “$\pi_1$-injective surfaces in graph manifolds”, Comment. Math. Helv., 73 (1998), 499–515 | DOI | MR | Zbl

[Sv1] Svetlov P. V., “Graf-mnogoobraziya nepolozhitelnoi krivizny virtualno rassloeny nad okruzhnostyu”, Algebra i analiz, 14:5 (2002), 188–201 | MR | Zbl

[Sv2] Svetlov P. V., Gomologicheskie i geometricheskie svoistva graf-mnogoobrazii, Dis. na soisk. uchen. st. kand. fiz.-mat. nauk, SPb., 2002

[Sk] Skott P., Geometrii na trekhmernykh mnogoobraziyakh, Mir, M., 1986

[Sch] Schroeder V., “Rigidity of nonpositively curved graphmanifolds”, Math. Ann., 274 (1986), 19–26 | DOI | MR | Zbl

[T] Thurston W. P., “Three-dimensional manifolds, Kleinian groups and hyperbolic geometry”, Bull. Amer. Math. Soc. (N.S.), 6 (1982), 357–381 | DOI | MR

[W] Waldhausen F., “Eine Ktasse von 3-dimensionalen Mannigfaltigkeiten. II”, Invent. Math., 4 (1967), 87–117 | DOI | MR | Zbl

[WSY] Wang S., Yu F., “Graph-manifolds with non-empty boundary are covered by surface bundles”, Math. Proc. Cambridge Philos. Soc., 122 (1997), 447–455 | DOI | MR | Zbl

[WYY] Wang Y., Yu F., “When closed graph manifolds are finitely covered by surface bundles over $S^1$”, Acta Math. Sin. (Engl. Ser.), 15:1 (1999), 11–20 | DOI | MR | Zbl