Spectral boundary problems for Dirac systems with a~singular potential
Algebra i analiz, Tome 16 (2004) no. 1, pp. 33-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2004_16_1_a2,
     author = {M. S. Agranovich and G. V. Rozenblum},
     title = {Spectral boundary problems for {Dirac} systems with a~singular potential},
     journal = {Algebra i analiz},
     pages = {33--69},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2004_16_1_a2/}
}
TY  - JOUR
AU  - M. S. Agranovich
AU  - G. V. Rozenblum
TI  - Spectral boundary problems for Dirac systems with a~singular potential
JO  - Algebra i analiz
PY  - 2004
SP  - 33
EP  - 69
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2004_16_1_a2/
LA  - ru
ID  - AA_2004_16_1_a2
ER  - 
%0 Journal Article
%A M. S. Agranovich
%A G. V. Rozenblum
%T Spectral boundary problems for Dirac systems with a~singular potential
%J Algebra i analiz
%D 2004
%P 33-69
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2004_16_1_a2/
%G ru
%F AA_2004_16_1_a2
M. S. Agranovich; G. V. Rozenblum. Spectral boundary problems for Dirac systems with a~singular potential. Algebra i analiz, Tome 16 (2004) no. 1, pp. 33-69. http://geodesic.mathdoc.fr/item/AA_2004_16_1_a2/

[1] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[2] Szmytkowski R., Metoda $R$-macierzy dla róvnań Schrödingera i Diraca, Politechnika Gdańska, Gdańsk, 1999

[3] Kurant P., Gilbert D., Metody matematicheskoi fiziki, T. I, GTTI, M.-L., 1933

[4] Agranovich M. S., “Spektralnye zadachi dlya sistemy Diraka so spektralnym parametrom v lokalnykh granichnykh usloviyakh”, Funkts. anal. i ego pril., 35:3 (2001), 1–18 | MR | Zbl

[5] Ivrii V., Precise spectral asymptotics for elliptic operators acting in flberlngs over manifolds with boundary, Lecture Notes in Math., 1100, Springer-Verlag, Berlin, 1984 | MR | Zbl

[6] Birman M. Sh., Solomyak M. Z., “Spektralnaya asimptotika negladkikh ellipticheskikh operatorov, I, II”, Tr. Mosk. mat. o-va, 27, 1972, 3–52 ; 28, 1973, 3–34 | MR | Zbl | MR | Zbl

[7] Thaller B., The Dirac equation, Springer-Verlag, Berlin, 1992 | MR

[8] Kalf H., Schmincke U.-W., Walter J., Wüst R., “On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials”, Spectral Theory and Differential Equations (Proc. Sympos., Dundee, 1974), Lecture Notes in Math., 448, Springer-Verlag, Berlin, 1975, 182–226 | MR

[9] Nenciu G., “Self-adjointness and invariance of the essential spectrum for Dirac operators defined as quadratic forms”, Comm. Math. Phys., 48 (1976), 235–247 | DOI | MR | Zbl

[10] Rozenblyum G. V., “Raspredelenie diskretnogo spektra singulyarnykh differentsialnykh operatorov”, Izv. vuzov. Ser. matem., 1976, no. 1(164), 75–86 | Zbl

[11] Nakamura G., Tsuchida T., “Uniqueness for an inverse boundary value problem for Dirac operators”, Comm. Partial Differential Equations, 25:7–8 (2000), 1327–1369 | MR | Zbl

[12] Dolbeault J., Esteban M. J., Séré E., “On the eigenvalues of operators with gaps. Application to Dirac operators”, J. Funct. Anal., 174 (2000), 208–226 | DOI | MR | Zbl

[13] Vogelsang V., “Remark on essential selfadjointness of Dirac operators with Coulomb potentials”, Math. Z., 196 (1987), 517–521 | DOI | MR | Zbl

[14] Narcowich F. J., “Mathematical theory of $R$-matrix. I. The eigenvalue problem”, J. Math. Phys., 15:10 (1974), 1626–1634 ; “II. The $R$-matrix and its properties”, 1635–1642 | DOI | MR | Zbl | MR

[15] Agranovich M. S., “Spektralnye zadachi dlya silno ellipticheskikh sistem vtorogo poryadka v oblastyakh s gladkoi i negladkoi granitsei”, Uspekhi mat. nauk, 57:5(347) (2002), 3–78 | MR

[16] Hamacher P., Hinze J., “Finite-volume variational method for the Dirac equation”, Phys. Rev. A (3), 44:9 (1991), 1705–1711 | DOI | MR

[17] Schmincke U.-W., “Essential selfadjointness of Dirac operators with a strongly singular potential”, Math. Z., 126 (1972), 71–81 | DOI | MR | Zbl

[18] Boutet de Monvel A. M., Purice R., “A distinguished self-adjoint extension for the Dirac operator with strong local singularities and arbitrary behaviour at infinity”, Rep. Math. Phys., 34 (1994), 351–360 | DOI | MR | Zbl

[19] Agranovich M. S., “Elliptic boundary problems”, Partial Differential Equations, IX, Encyclopaedia Math. Sci., 79, Springer-Verlag, Berlin, 1997, 1–144 | MR | Zbl

[20] Wüst R., “A convergence theorem for selfadjoint operators applicable to Dirac operators with cutoff potentials”, Math. Z., 131 (1973), 339–349 | DOI | MR | Zbl

[21] Wüst R., “Distinguished self-adjoint extensions of Dirac operators constructed by means of cut-off potentials”, Math. Z., 141 (1975), 93–98 | DOI | MR | Zbl

[22] Wüst R., “Dirac operations with strongly singular potentials”, Math. Z., 152 (1977), 259–271 | DOI | MR | Zbl

[23] Klaus M., Wüst R., “Characterization and uniqueness of distinguished selfadjoint extensions of Dirac operators”, Comm. Math. Phys., 64 (1979), 171–176 | DOI | MR | Zbl

[24] Klaus M., Wüst R., “Spectral properties of Dirac operators with singular potentials”, J. Math. Anal. Appl., 72 (1979), 206–214 | DOI | MR | Zbl

[25] Schmincke U.-W., “Distinguished selfadjoint extensions of Dirac operators”, Math. Z., 129 (1972), 335–349 | DOI | MR | Zbl

[26] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. I., Sobolevskii P. E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR

[27] Tribel X., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR

[28] Grisvard P., “Caractérisation de quelques espaces d'interpolation”, Arch. Rational Mech. Anal., 25 (1967), 40–63 | DOI | MR | Zbl

[29] Seeley R. T., “Interpolation in $L_p$ with boundary conditions”, Studia Math., 44 (1972), 47–60 | MR | Zbl

[30] Volevich L. P., Gindikin S. G., Obobschennye funktsii i uravneniya v svertkakh, Nauka, M., 1994 | MR | Zbl

[31] Birman M. Sh., “Zadachi rasseyaniya dlya differentsialnykh operatorov s postoyannymi koeffitsientami”, Funkts. anal. i ego pril., 3:3 (1969), 1–16 | MR | Zbl

[32] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[33] Weidmann J., Spectral theory of ordinary differential operators, Lecture Notes in Math., 1258, Springer-Verlag, Berlin, 1987 | MR | Zbl

[34] Vogelsang V., “Selfadjoint extensions of Dirac operators for nonspherically symmetric potentials in Coulomb scattering”, Integral Equations Operator Theory, 10 (1987), 841–858 | DOI | MR | Zbl

[35] Nenciu G., “Distinguished self-adjoint extension for Dirac operator with potential dominated by multicenter Coulomb potentials”, Helv. Phys. Acta, 50 (1977), 1–3 | MR

[36] Klaus M., “Dirac operators with several Coulomb singularities”, Helv. Phys. Acta, 53 (1980), 463–482, 1981 | MR

[37] Ivrii V., Microlocat analysis and precise spectral asymptotics, Springer-Verlag, Berlin, 1998 | MR | Zbl

[38] Gelfand I. M., Minlos R. A., Shapiro Z. Ya., Predstavleniya gruppy vraschenii i gruppy Lorentsa, Fizmatgiz, M., 1958

[39] Ivrii V. Ya., “O tochnykh spektralnykh asimptotikakh dlya ellipticheskikh operatorov, deistvuyuschikh v rassloeniyakh”, Funkts. anal. i ego pril., 16:2 (1982), 30–38 | MR | Zbl