Semiclassical analysis of a~nonlinear eigenvalue problem and nonanalytic hypoellipticity
Algebra i analiz, Tome 16 (2004) no. 1, pp. 320-334.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2004_16_1_a10,
     author = {B.Helffer and D. Robert and X. P. Wang},
     title = {Semiclassical analysis of a~nonlinear eigenvalue problem and nonanalytic hypoellipticity},
     journal = {Algebra i analiz},
     pages = {320--334},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2004_16_1_a10/}
}
TY  - JOUR
AU  - B.Helffer
AU  - D. Robert
AU  - X. P. Wang
TI  - Semiclassical analysis of a~nonlinear eigenvalue problem and nonanalytic hypoellipticity
JO  - Algebra i analiz
PY  - 2004
SP  - 320
EP  - 334
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2004_16_1_a10/
LA  - ru
ID  - AA_2004_16_1_a10
ER  - 
%0 Journal Article
%A B.Helffer
%A D. Robert
%A X. P. Wang
%T Semiclassical analysis of a~nonlinear eigenvalue problem and nonanalytic hypoellipticity
%J Algebra i analiz
%D 2004
%P 320-334
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2004_16_1_a10/
%G ru
%F AA_2004_16_1_a10
B.Helffer; D. Robert; X. P. Wang. Semiclassical analysis of a~nonlinear eigenvalue problem and nonanalytic hypoellipticity. Algebra i analiz, Tome 16 (2004) no. 1, pp. 320-334. http://geodesic.mathdoc.fr/item/AA_2004_16_1_a10/

[1] Chanillo S., Kirillov theory, Trèves strata, Schrödinger equations and analytic hypoelliptlcity of sums of squares, Preprint, 2001 ; http://arxiv.org/pdf/math.AP/0107106 | Zbl

[2] Chanillo S., Helffer B., Laptev A., Nonlinear eigenvalues and analytic hypoellipticity, Preprint, Inst. Mittag-Leffler ; ; J. Funct. Anal., 209:2 (2004), 425–443 http://arxiv.org/math.AP/0211308 | MR | DOI | Zbl

[3] Christ M., “Some nonanalytic-hypoelliptic sums of squares of vector fields”, Bull. Amer. Math. Soc. (N.S.), 26:1 (1992), 137–140 | DOI | MR | Zbl

[4] Christ M., “Analytic hypoellipticity, representations of nilpotent groups, and a nonlinear eigenvalue problem”, Duke Math. J., 72 (1993), 595–639 | DOI | MR | Zbl

[5] Christ M., MSRI Preprint no. 009-96, Math. Sci. Res. Inst., Berkeley, CA, 1996

[6] Christ M., “The Szego projection need not preserve global analyticity”, Ann. of Math. (2), 143 (1996), 301–330 | DOI | MR | Zbl

[7] Grigis A., Sjöstrand S., “Front d'onde analytique et sommes de carrés de champs de vecteurs”, Duke Math. J., 52:1 (1985), 35–51 | DOI | MR | Zbl

[8] Grushin V. V., “Ob odnom klasse ellipticheskikh psevdodifferentsialnykh operatorov, vyrozhdayuschikhsya na mnogoobrazii”, Mat. sb., 84(126):2 (1971), 163–195 | Zbl

[9] Hanges N., Himonas A. A., “Non-analytic hypoellipticity in the presence of symplecticity”, Proc. Amer. Math. Soc., 126:2 (1998), 405–409 | DOI | MR | Zbl

[10] Helffer B., “Conditions nécessaires d'hypoanalytlclté pour des opérateurs invariants á gauche homogènes sur un groupe nilpotent gradue”, J. Differential Equations, 44:3 (1982), 460–481 | DOI | MR | Zbl

[11] Markus A. S., Vvedenie v spektralnuyu teoriyu polinomialnykh operatornykh puchkov, Shtiintsa, Kishinev, 1986 ; Transl. Math. Monogr., 71, Amer. Math. Soc., Providence, RI, 1988 | MR | Zbl | Zbl

[12] Métivier G., Une classe d'operateurs non hypoelliptiques analytiques Séminaire Goulaouic–Schwartz (1978–1979), Exp. No. 12, Ècole Polytech., Palaiseau, 1979 | MR

[13] Metivier G., “Analytic hypoellipticity for operators with multiple characteristics”, Comm. Partial Differential Equations, 6 (1981), 1–90 | DOI | MR | Zbl

[14] Métivier G., “Une classe d'operateurs non hypoelliptiques analytiques”, Indiana Univ. Math. J., 29 (1980), 823–860 | DOI | MR | Zbl

[15] Métivier G., “Non hypoellipticité analytique pour des opérateurs à caractéristtques doubles”, Goulaouic–Meyer–Schwartz Seminar, 1981/1982, École Polytech., Palaiseau, 1982, Exp. No. 12, 13 pp. | MR

[16] Nédélec L., “Existence of resonances for matrix Schrödinger operators”, Asymptotic Anal., 35:3–4 (2003), 301–324 | MR | Zbl

[17] Pham The Lai, Robert D., “Sur un problème aux valeurs propres non linéaire”, Israel J. Math., 36:2 (1980), 169–186 | DOI | MR | Zbl

[18] Robert D., Autour de l'approximation semi-classique, Progr. Math., 68, Birkhäuser Boston, Inc., Boston, MA, 1987 | MR | Zbl

[19] Simon B., Trace ideals and their applications, London Math. Soc. Lecture Note Ser., 35, Cambridge Univ. Press, Cambridge–New York, 1979 | MR | Zbl

[20] Sjostrand J., “Analytic wavefront sets and operators with multiple characteristics”, Hokkaido Math. J., 12 (1983), 392–433 | MR

[21] Tartakoff D., “The local real analyticity of solutions to $\square$b and the $\overline\partial$-Neumann problem”, Acta Math., 145 (1980), 117–204 | DOI | MR

[22] Trèves F., “Analytic hypo- etltpticity of a class of pseudo-differential operators with double characteristics and applications to the $\overline\partial$-Neumann problem”, Comm. Partial Differential Equations, 3:6–7 (1978), 475–642 | DOI | MR | Zbl

[23] Trèves F., “Symplectic geometry and analytic hypo-ellipticity”, Differential Equations: La Pietra 1996 (Florence), Proc. Sympos. Pure Math., 65, Amer. Math. Soc., Providence, RI, 1999, 201–219 | MR | Zbl