Isometric embeddings of finite-dimensional $\ell_p$-spaces over the quaternions
Algebra i analiz, Tome 16 (2004) no. 1, pp. 15-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The nonexistence of isometric embeddings $\ell_q^m\to\ell_p^n$ with $p\ne q$ is proved. The only exception is $q=2$, $p\in2\mathbb N$, then an isometric embedding exists if $n$ is sufficiently large, $n\geq N(m,p)$. Some lower bounds for $N(m,p)$ are obtained by using the equivalence between the isometric embeddings in question and the cubature formulas for polynomial functions on projective spaces. Even though only the quaternion case is new, the exposition treats the real, complex, and quaternion cases simultaneously.
Keywords: isometric embeddings, cubature formulas, addition theorem.
@article{AA_2004_16_1_a1,
     author = {Yu. I. Lyubich and O. A. Shatalova},
     title = {Isometric embeddings of finite-dimensional $\ell_p$-spaces over the quaternions},
     journal = {Algebra i analiz},
     pages = {15--32},
     year = {2004},
     volume = {16},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2004_16_1_a1/}
}
TY  - JOUR
AU  - Yu. I. Lyubich
AU  - O. A. Shatalova
TI  - Isometric embeddings of finite-dimensional $\ell_p$-spaces over the quaternions
JO  - Algebra i analiz
PY  - 2004
SP  - 15
EP  - 32
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AA_2004_16_1_a1/
LA  - en
ID  - AA_2004_16_1_a1
ER  - 
%0 Journal Article
%A Yu. I. Lyubich
%A O. A. Shatalova
%T Isometric embeddings of finite-dimensional $\ell_p$-spaces over the quaternions
%J Algebra i analiz
%D 2004
%P 15-32
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/AA_2004_16_1_a1/
%G en
%F AA_2004_16_1_a1
Yu. I. Lyubich; O. A. Shatalova. Isometric embeddings of finite-dimensional $\ell_p$-spaces over the quaternions. Algebra i analiz, Tome 16 (2004) no. 1, pp. 15-32. http://geodesic.mathdoc.fr/item/AA_2004_16_1_a1/

[1] Bannai E., “Spherical $t$-designs which are orbits of finite groups”, J. Math. Soc. Japan, 36 (1984), 341–354 | DOI | MR | Zbl

[2] Bannai E., “On extremal finite sets in the sphere and other metric spaces”, Algebraic, Extremal and Metric Combinatorics (Montreal, PQ, 1986), London Math. Soc. Lecture Note Ser., 131, Cambridge Univ. Press, Cambridge, 1988, 13–38 | MR

[3] Bannai E., Hoggar S. G., “On tight $t$-designs in compact symmetric spaces of rank one”, Proc. Japan Acad. Ser. A Math. Sci., 61 (1985), 78–82 | DOI | MR | Zbl

[4] Bannai E., Ito S., Algebraic combinatorics. I. Associative schemes, Benjamin/Cummings, Mehlo Park, CA, 1984 | MR | Zbl

[5] Delbaen F. Jarchow H., Pelczyriski A., “Subspaces of $L_p$ isometric to subspaces of $\ell_p$”, Positivity, 2 (1998), 339–367 | DOI | MR | Zbl

[6] Delsarte P., Goethals J. M., Seidel J. J., “Bounds for systems of lines and Jacobi polynomials”, Philips Res. Rep., 30 (1975), 91–105, (Issue in honour of C. J. Bouwkamp) | MR | Zbl

[7] Delsarte P., Goethals J.-M., Seidel J. J., “Spherical codes and designs”, Geom. Dedicata, 6 (1977), 363–388 | MR | Zbl

[8] Dickson L. E., History of the theory of numbers, Vol. 2, 256, Carnegie Inst. Washington Publ., New York, 1952

[9] Ditkin V. A., “O nekotorykh priblizhennykh formulakh dlya vychisleniya trekhkratnykh integralov”, Dokl. AN SSSR, 62 (1948), 445–447 | MR | Zbl

[10] Ellison W. J., “Waring's problem”, Amer. Math. Monthly, 78 (1971), 10–36 | DOI | MR | Zbl

[11] Godsil C. D., Algebraic combinatorics, Chapman and Hall, New York, 1993 | MR | Zbl

[12] Goethals J. M., Seidel J. J., “Cubature formulas, polytopes, and spherical designs”, The Geometric Vein, Springer, New York–Berlin, 1981, 203–218 | MR

[13] Grinberg E. L., “Spherical harmonics and integral geometry on projective spaces”, Trans. Amer. Math. Soc., 279 (1983), 187–203 | DOI | MR | Zbl

[14] Hilbert D., “Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl $n$-ter Potenzen (Waringsches Problem)”, Math. Ann., 67 (1909), 281–300 | DOI | MR | Zbl

[15] Hoggar S. G., Zonal functions and the symplectic group, Preprint, Mat. Inst. Aarhus Univ., 1977, 1–22

[16] Hoggar S. G., “Bounds for quaternionic line systems and reflection groups”, Math. Scand., 43 (1978), 241–249 | MR | Zbl

[17] Hoggar S. G., “$t$-designs in projective spaces”, European J. Combin., 3 (1982), 233–254 | MR | Zbl

[18] Hoggar S. G., “$t$-designs in Delsarte spaces”, Coding Theory and Design Theory, IMA Vol. Math. Appl., 21, Part II, Springer-Verlag, New York, 1990, 144–165 | MR

[19] König H., “Isometric imbeddings of Euclidean spaces into finite-dimensional $\ell_p$-spaces”, Panoramas of Mathematics (Warsaw, 1992/1994), Banach Center Publ., 34, Polish Acad. Sci., Warsaw, 1995, 79–87 | MR | Zbl

[20] Koornwinder T. H., “The addition formula for Jacobi polynomials and spherical harmonics”, SIAM J. Appl. Math., 25 (1973), 236–246 | DOI | MR | Zbl

[21] Korevaar J., Meyers J. L. H., “Chebyshev-type quadrature on multidimensional domains”, J. Approx. Theory, 79 (1994), 144–164 | DOI | MR | Zbl

[22] Lyubich Yu. I., “O granichnom spektre szhatii v prostranstvakh Minkovskogo”, Sib. mat. zh., 11 (1970), 358–369 | Zbl

[23] Lyubich Y. I., “Almost Euclidean subspaces of real $\ell_p^n$ with $p$ even integer”, Geometric Aspects of Functional Analysis, Lecture Notes in Math., 1850, Springer-Verlag, Berlin, 2004, 179–192 | MR | Zbl

[24] Lyubich Y. I., Shatalova O. A., “Euclidean subspaces of the complex spaces constructed by orbits of finite subgroups of $SU(m)$”, Geom. Dedicata, 86 (2001), 169–178 | DOI | MR | Zbl

[25] Lyubich Y. I., Vaserstein L. N., “Isometric embeddings between classical Banach spaces, cubature formulas, and spherical designs”, Geom. Dedicata, 47 (1993), 327–362 | DOI | MR | Zbl

[26] Milman V. D., “A few observations on the connections between local theory and some other fields”, Geometric Aspects of Functional Analysis (1986/87), Lecture Notes in Math., 1317, Springer-Verlag, Berlin–New York, 1988, 283–289 | MR

[27] Ml̈ler C., Spherical harmonics, Lecture Notes in Math., 17, Springer-Verlag, Berlin–New York, 1966 | MR

[28] Neumaier A., Combinatorial configuration in terms of distances, Memorandum 81-09, Dept. of Math. Eindhoven Univ., 1981

[29] Reznick B., Sums of even powers of real linear forms, Mem. Amer. Math. Soc., 96, no. 463, 1992 | MR

[30] Seymour P. D., Zaslavsky T., “Averaging sets: a generalization of mean values and spherical designs”, Adv. in Math., 52 (1984), 213–240 | DOI | MR | Zbl

[31] Sobolev S. L., “O kubaturnykh formulakh na sfere, invariantnykh pri preobrazovaniyakh konechnykh grupp vraschenii”, Dokl. AN SSSR, 146:2 (1962), 310–313 | MR | Zbl

[32] Sobolev S L., Vaskevich V. L., Kubaturnye formuly, RAN, SO, In-t mat., Novosibirsk, 1996 | Zbl

[33] Szegő C., Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Amer. Math. Soc., Providence, RI, 1959 | MR | Zbl