Toeplitz and Hankel matrices as Hadamard--Schur multipliers
Algebra i analiz, Tome 15 (2003) no. 6, pp. 141-160.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2003_15_6_a5,
     author = {L. N. Nikol'skaya and J. B. Farforovskaja},
     title = {Toeplitz and {Hankel} matrices as {Hadamard--Schur} multipliers},
     journal = {Algebra i analiz},
     pages = {141--160},
     publisher = {mathdoc},
     volume = {15},
     number = {6},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2003_15_6_a5/}
}
TY  - JOUR
AU  - L. N. Nikol'skaya
AU  - J. B. Farforovskaja
TI  - Toeplitz and Hankel matrices as Hadamard--Schur multipliers
JO  - Algebra i analiz
PY  - 2003
SP  - 141
EP  - 160
VL  - 15
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2003_15_6_a5/
LA  - ru
ID  - AA_2003_15_6_a5
ER  - 
%0 Journal Article
%A L. N. Nikol'skaya
%A J. B. Farforovskaja
%T Toeplitz and Hankel matrices as Hadamard--Schur multipliers
%J Algebra i analiz
%D 2003
%P 141-160
%V 15
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2003_15_6_a5/
%G ru
%F AA_2003_15_6_a5
L. N. Nikol'skaya; J. B. Farforovskaja. Toeplitz and Hankel matrices as Hadamard--Schur multipliers. Algebra i analiz, Tome 15 (2003) no. 6, pp. 141-160. http://geodesic.mathdoc.fr/item/AA_2003_15_6_a5/

[1] Bakonyi M., Timotin D., “On an extension problem for polynomials”, Bull. London Math. Soc., 33:5 (2001), 599–605 | DOI | MR | Zbl

[2] Bennett G., “Schur multipliers”, Duke Math. J., 44 (1977), 603–639 | DOI | MR | Zbl

[3] Birman M. Sh., Solomyak M. Z., “Dvoinye operatornye integraly Stiltesa. III. Predelnyi perekhod pod znakom integrala”, Probl. mat. fiz., 6, LGU, L., 1973, 27–53 | MR

[4] Bonami A., Bruna J., “On truncations of Hankel and Toeplitz operators”, Publ. Mat., 43 (1999), 235–250 | MR | Zbl

[5] Böttcher A., Silbermann B., Analysis of Toeplitz operators, Springer-Verlag, Berlin, 1990 | MR

[6] Davidson K., Nest algebras. Triangular forms for operator algebras on Hilbert space, Pitman Res. Notes Math. Ser., 191, Longman Sci. and Tech., Harlow, 1988 | MR | Zbl

[7] DeVore R., Lorentz G., Constructive approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993 | MR | Zbl

[8] Dunford N., Schwartz J., Linear operators. Part 1. General theory, Pure Appl. Math., 7, Intersci. Publishers, Inc., New York, 1958 | MR

[9] Edwards R., Gaudry G., Littlewood-Paley and multiplier theory, Ergeb. Math. Grenzgeb., 90, Springer-Verlag, Berlin–New York, 1977 | MR | Zbl

[10] Gohberg I., Goldberg S., Kaashoek R., Classes of linear operators, Vol. 2, Operator Theory Adv. Appl., 63, Birkhäuser Verlag, Basel, 1993 | Zbl

[11] Grothendieck A., “Résumé de la théorie métrique des produits tensoriels topologiques”, Boll. Soc. Mat. São Paulo, 8 (1953) (1956), 1–79 | MR | Zbl

[12] Helson H., Harmonic analysis, Addison-Wesley Publishing Co., Reading, MA, 1983 | MR | Zbl

[13] Hille E., Phillips R., Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., 31, Amer. Math. Soc., Providence, RI, 1957 | MR | Zbl

[14] Horn R., “The Hadamard product”, Matrix Theory and Applications (Phoenix, AZ, 1989), Proc. Sympos. Appl. Math., 40, Amer. Math. Soc., Providence, RI, 1990, 87–169 | MR

[15] Matsaev V. I., “Ob odnom klasse vpolne nepreryvnykh operatorov”, Dokl. AN SSSR, 139:3 (1961), 548–551 | Zbl

[16] Nikolski N., Operators, functions, and systems: an easy reading. V. 1. Hardy, Hankel, and Toeplltz, Math. Surveys Monogr., 92, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[17] Olevskii V., Solomyak M., “An estimate for Schur multipliers in $S_p$ classes”, Linear Algebra Appl., 208/209 (1994), 57–64 | DOI | MR | Zbl

[18] Ong S., “On the Schur multiplier norm of matrices”, Linear Algebra Appl., 56 (1984), 45–55 | DOI | MR | Zbl

[19] Peller V., “Estimates of functions of power bounded operators on Hilbert spaces”, J. Operator Theory, 7 (1982), 341–372 | MR | Zbl

[20] Peller V. V., “Gankelevy multiplikatory Shura i multiplikatory prostranstva $H^1$”, Zap. nauch. semin. LOMI, 135, 1984, 113–119 | MR | Zbl

[21] Peller V. V., “Operatory Gankelya v teorii vozmuschenii unitarnykh i samosopryazhennykh operatorov”, Funkts. anal. i ego pril., 19:2 (1985), 37–51 | MR | Zbl

[22] Pisier G., Similarity problem and completely bounded maps, 2nd, expanded ed., Lecture Notes in Math., 1618, Springer-Verlag, Berlin, 2001 | MR | Zbl

[23] Varopoulos N., “Tensor algebras over discrete spaces”, J. Funct. Anal., 3 (1969), 321–335 | DOI | MR | Zbl