Solvability of systems of nonhomogeneous convolution equations in convex domains in $\mathbb C^1$
Algebra i analiz, Tome 15 (2003) no. 6, pp. 48-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2003_15_6_a2,
     author = {A. S. Krivosheev and S. N. Gantsev},
     title = {Solvability of systems of nonhomogeneous convolution equations in convex domains in $\mathbb C^1$},
     journal = {Algebra i analiz},
     pages = {48--73},
     publisher = {mathdoc},
     volume = {15},
     number = {6},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2003_15_6_a2/}
}
TY  - JOUR
AU  - A. S. Krivosheev
AU  - S. N. Gantsev
TI  - Solvability of systems of nonhomogeneous convolution equations in convex domains in $\mathbb C^1$
JO  - Algebra i analiz
PY  - 2003
SP  - 48
EP  - 73
VL  - 15
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2003_15_6_a2/
LA  - ru
ID  - AA_2003_15_6_a2
ER  - 
%0 Journal Article
%A A. S. Krivosheev
%A S. N. Gantsev
%T Solvability of systems of nonhomogeneous convolution equations in convex domains in $\mathbb C^1$
%J Algebra i analiz
%D 2003
%P 48-73
%V 15
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2003_15_6_a2/
%G ru
%F AA_2003_15_6_a2
A. S. Krivosheev; S. N. Gantsev. Solvability of systems of nonhomogeneous convolution equations in convex domains in $\mathbb C^1$. Algebra i analiz, Tome 15 (2003) no. 6, pp. 48-73. http://geodesic.mathdoc.fr/item/AA_2003_15_6_a2/

[1] Napalkov V. V., Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982 | MR

[2] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[3] Krivosheev A. S., “Kriterii razreshimosti neodnorodnykh uravnenii svertki v vypuklykh oblastyakh prostranstva $\mathbb C^n$”, Izv. AN SSSR. Ser. mat., 54:3 (1990), 480–500 | MR | Zbl

[4] Krivosheev A. S., Napalkov V. V., “Kompleksnyi analiz i operatory svertki”, Uspekhi mat. nauk, 47:6 (1992), 3–58 | MR | Zbl

[5] Krivosheev A. S., “Regulyarnost rosta sistemy funktsii i sistemy neodnorodnykh uravnenii svertki v vypuklykh oblastyakh kompleksnoi ploskosti”, Izv. RAN. Ser. mat., 64:5 (2000), 69–132 | MR | Zbl

[6] Kusis P., Vvedenie v teoriyu prostranstv $H^p$ s prilozheniem dokazatelstva Volffa teoremy o korone, Mir, M., 1984 | MR

[7] Dedonne Zh., Shvarts L., “Dvoistvennost v prostranstve $(F)$ i $(LF)$”, Matematika. Period. sb. per. in. st., 2:2 (1958), 77–107

[8] Wiegerink J. J., “Growth properties of Paley–Wiener functions on $\mathbb C^n$”, Nederl. Akad. Wetensch. Indag. Math., 46 (1984), 95–112 | MR

[9] Segurdsson R., “Convolution equations in domains of $\mathbb C^n$”, Ark. Mat., 29 (1991), 285–305 | DOI | MR

[10] Leontev A. F., Tselye funktsii. Ryady eksponent, Nauka, M., 1983 | MR

[11] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi. I. Teoriya raspredelenii i analiz Fure, Mir, M., 1986