Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2003_15_5_a4, author = {M. F. Gamal'}, title = {$C_0$-contractions: the {Jordan} model and lattices of invariant subspaces}, journal = {Algebra i analiz}, pages = {198--227}, publisher = {mathdoc}, volume = {15}, number = {5}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2003_15_5_a4/} }
M. F. Gamal'. $C_0$-contractions: the Jordan model and lattices of invariant subspaces. Algebra i analiz, Tome 15 (2003) no. 5, pp. 198-227. http://geodesic.mathdoc.fr/item/AA_2003_15_5_a4/
[1] Sekefalvi-Nad B., Foyash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR
[2] Bercovici H., Operator theory and arithmetic in $H^\infty$, Math. Surveys Monographs, 26, Amer. Math. Soc., Providence, RI, 1988 | MR | Zbl
[3] Kapustin V. V., “Refleksivnost operatorov: obschie metody i kriterii dlya pochti izometricheskikh szhatii”, Algebra i analiz, 4:2 (1992), 141–160 | MR
[4] Kapustin V. V., Lipin A. V., “Operatornye algebry i reshetki invariantnykh podprostranstv. I, II”, Zap. nauch. semin. LOMI, 178, 1989, 23–56 ; 190, 1991, 110–147 | MR
[5] Gamal M. F., “Kvazipodobnye slabye szhatiya imeyut izomorfnye reshetki invariantnykh podprostranstv”, Zap. nauch. semin. POMI, 282, 2001, 51–65 | MR | Zbl
[6] Sz.-Nagy B., Foiaş C., “Jordan model for contractions of class $C_0$”, Acta Sci. Math. (Szeged), 36 (1974), 305–322 | MR
[7] Gamal M. F., “Reshetki invariantnykh podprostranstv kvaziaffinnogo preobrazovaniya odnostoronnego sdviga konechnoi kratnosti”, Zap. nauch. semin. POMI, 290, 2002, 27–32 | MR | Zbl
[8] Takahashi K., “On quasi-affine transforms of unilateral shifts”, Proc. Amer. Math. Soc., 100 (1987), 683–687 | DOI | MR | Zbl
[9] Moore B., Nordgren E. A., “Remark on the Jordan model for contractions of class $C_0$”, Acta Sci. Math. (Szeged), 37 (1975), 307–312 | MR | Zbl
[10] Sz.-Nagy B., “Diagonalization of matrices over $H^\infty$”, Acta Sci. Math. (Szeged), 38 (1976), 223–238 | MR
[11] Wu P. Y., “$C_0$-contractions: cyclic vectors, commutants and Jordan models”, J. Operator Theory, 5 (1981), 53–62 | MR | Zbl
[12] Exner G. R., Jung I. B., “Some multiplicities for contractions with Hilbert–Schmidt defect”, Nonselfadjoint Operator Algebras, Operator Theory, and Related Topics, Oper. Theory Adv. Appl., 104, Birkhäuser, Basel, 1998, 113–138 | MR | Zbl
[13] Uchiyama M., “Contractions with $(\sigma,c)$ defect operators”, J. Operator Theory, 12 (1984), 221–233 | MR | Zbl
[14] Uchiyama M., “Contractions and unilateral shifts”, Acta Sci. Math. (Szeged), 46 (1983), 345–356 | MR | Zbl
[15] Takahashi K., “$C_1$-contractions with Hilbert–Schmidt defect operators”, J. Operator Theory, 12 (1984), 331–347 | MR | Zbl
[16] Takahashi K., “Injection of unilateral shifts into contractions”, Acta Sci. Math. (Szeged), 57 (1993), 263–276 | MR | Zbl
[17] Wu P. Y., “On the quasi-similarity of hyponormal contractions”, Illinois J. Math., 25 (1981), 498–503 | MR | Zbl
[18] Vasyunin V. I., Nikolskii N. K., “Upravlyayuschie podprostranstva minimalnoi razmernosti. Elementarnoe vvedenie. Discotheca”, Zap. nauch. semin. LOMI, 113, 1981, 41–75 | MR
[19] Vasyunin V. I., Nikolskii N. K., Upravlyayuschie podprostranstva minimalnoi razmernosti. Unitarnye i modelnye operatory. Discotheca, Preprinty LOMI No R-5-81, LOMI, L., 1981
[20] Vasyunin V. I., “Formula for multiplicity of contractions with finite defect indices”, Toeplitz Operators and Spectral Function Theory, Oper. Theory Adv. Appl., 42, Birkhäuser, Basel, 1989, 281–304 | MR
[21] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980 | MR
[22] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR
[23] Sarason D., “Invariant subspaces and unstarred operator algebras”, Pacific J. Math., 17 (1966), 511–517 | MR | Zbl
[24] Sarason D., “Weak-star generators of $H^\infty$”, Pacific J. Math., 17 (1966), 519–528 | MR | Zbl
[25] Kérchy L., “On a conjecture of Teodorescu and Vasyunin”, Special Classes of Linear Operators and other Topics (Bucharest, 1986), Oper. Theory Adv. Appl., 28, Birkhäuser, Basel–Boston, MA, 1988, 169–172 | MR
[26] Wu P. Y., “Which $C_0$ contraction is quasi-similar to its Jordan modell”, Acta Sci. Math. (Szeged), 47 (1984), 449–455 | MR | Zbl
[27] Wu P. Y., “When is a contraction quasi-similar to an isometry?”, Acta Sci. Math. (Szeged), 44 (1982), 151–155 | MR | Zbl
[28] Vasyunin V. I., Makarov N. G., “O kvazipodobii modelnykh szhatii s neravnymi defektami”, Zap. nauch. semin. LOMI, 149, 1986, 24–37 | MR