Inversion theorems for the Pompeiu local transformation on the quaternion hyperbolic space
Algebra i analiz, Tome 15 (2003) no. 5, pp. 169-197.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2003_15_5_a3,
     author = {Vit. V. Volchkov and N. P. Volchkova},
     title = {Inversion theorems for the {Pompeiu} local transformation on the quaternion hyperbolic space},
     journal = {Algebra i analiz},
     pages = {169--197},
     publisher = {mathdoc},
     volume = {15},
     number = {5},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2003_15_5_a3/}
}
TY  - JOUR
AU  - Vit. V. Volchkov
AU  - N. P. Volchkova
TI  - Inversion theorems for the Pompeiu local transformation on the quaternion hyperbolic space
JO  - Algebra i analiz
PY  - 2003
SP  - 169
EP  - 197
VL  - 15
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2003_15_5_a3/
LA  - ru
ID  - AA_2003_15_5_a3
ER  - 
%0 Journal Article
%A Vit. V. Volchkov
%A N. P. Volchkova
%T Inversion theorems for the Pompeiu local transformation on the quaternion hyperbolic space
%J Algebra i analiz
%D 2003
%P 169-197
%V 15
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2003_15_5_a3/
%G ru
%F AA_2003_15_5_a3
Vit. V. Volchkov; N. P. Volchkova. Inversion theorems for the Pompeiu local transformation on the quaternion hyperbolic space. Algebra i analiz, Tome 15 (2003) no. 5, pp. 169-197. http://geodesic.mathdoc.fr/item/AA_2003_15_5_a3/

[1] Berenstein C. A., Gay R., Yger A., “Inversion of the local Pompeiu transform”, J. Anal. Math., 54 (1990), 259–287 | DOI | MR | Zbl

[2] Berenstein K. A, Struppa D., “Kompleksnyi analiz i uravneniya v svertkakh”, Kompleksnyi analiz – mnogie peremennye – 5, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 54, VINITI, M., 1989, 5–111 | MR

[3] Zalcman L., “A bibliographic survey of the Pompeiu problem”, Approximation by Solutions of Partial Differential Equations (Hanstholm, 1991), NATO Adv. Sci. Inst. Ser. C. Math. Phys. Sci., 365, Kluwer Acad. Publ., Dordrecht, 1992, 185–194 | MR

[4] Netuka I., Vesely J., “Mean value property and harmonic functions”, Classical and Modern Potential Theory and Applications (Chateau de Bonas, 1993), NATO Adv. Sci. Inst. Seri. C Math. Phys. Sci., 430, Kluwer Acad. Publ., Dordrecht, 1994, 359–398 | MR | Zbl

[5] Zalcman L., “Supplementary bibliography to : “A bibliographic survey of the Pompeiu problem””, Radon Transforms and Tomography (South Hadley, MA, 2000), Contemp. Math., 278, Amer. Math. Soc., Providence, RI, 2001, 69–74 | MR | Zbl

[6] Zalcman L., “Analyticity and the Pompeiu problem”, Arch. Rational Mech. Anal., 477 (1972), 237–254 | DOI | MR

[7] Berenstein C. A., Yger A., “Le problème de la déconvolution”, J. Funct. Anal., 54:2 (1983), 113–160 | DOI | MR | Zbl

[8] Berenstein C. A., Gay R., “A local version of the two-circles theorem”, Israel J. Math., 55 (1986), 267–288 | DOI | MR | Zbl

[9] Volchkov V. V., “Okonchatelnyi variant lokalnoi teoremy o dvukh radiusakh”, Mat. sb., 186:6 (1995), 15–34 | MR | Zbl

[10] Khelgason S., Gruppy i geometricheskii analiz, Mir, M., 1987 | MR

[11] Volchkov V. V., “Ob odnoi probleme Zaltsmana i ee obobscheniyakh”, Mat. zametki, 53:2 (1993), 30–36 | MR | Zbl

[12] El Harchaoui M., “Inversion de la transformation de Pompeiu dans le disque hyperbolique (cos de deux disques)”, Publ. Mat., 37 (1993), 133–164 | MR | Zbl

[13] El Harchaoui M., “Inversion de la transformation de Pompeiu locale dans les espaces hyperboliques reel et complexe: cas des deux boules”, J. Anal. Math., 67 (1995), 1–37 | DOI | MR | Zbl

[14] Volchkov V. V., “Teoremy o dvukh radiusakh na prostranstvakh postoyannoi krivizny”, Dokl. RAN, 347:3 (1996), 300–302 | MR | Zbl

[15] Volchkov Vit. V., “O funktsiyakh s nulevymi sharovymi srednimi na kvaternionnom giperbolicheskom prostranstve”, Izv. RAN. Ser. mat., 66:5 (2002), 3–32 | MR | Zbl

[16] Fomenko A. T., Simplekticheskaya geometriya: metody i prilozheniya, MGU, M., 1988 | MR

[17] Rudin U., Teoriya funktsii v edinichnom share iz $\mathbb C^n$, Mir, M., 1984 | MR | Zbl

[18] Berenstein C. A., Zalcman L., “Pompeiu's problem on symmetric spaces”, Comment. Math. Helv., 55 (1980), 593–621 | DOI | MR | Zbl

[19] Eguchi M., Hashizume M., Okamoto K., “The Paley–Wiener theorem for distributions on symmetric spaces”, Hiroshima Math. J., 3 (1973), 109–120 | MR | Zbl

[20] Volchkov V. V., “Okonchatelnyi variant lokalnoi teoremy o dvukh radiusakh na giperbolicheskikh prostranstvakh”, Izv. RAN. Ser. mat., 65:2 (2001), 3–26 | MR | Zbl

[21] Volchkov Vit. V., “Teoremy o sharovykh srednikh na kompleksnykh giperbolicheskikh prostranstvakh”, Dokl. AN Ukrainy, 2000, no. 4, 7–10 | MR | Zbl

[22] Volchkov Vit. V., “Okonchatelnyi variant lokalnoi teoremy o dvukh radiusakh na kvaternionnom giperbolicheskom prostranstve”, Dokl. RAN, 384:4 (2002), 449–451 | MR | Zbl

[23] Volchkov V. V., “Lokalnaya teorema o dvukh radiusakh na simmetricheskikh prostranstvakh”, Dokl. RAN, 381:6 (2001), 727–731 | MR | Zbl

[24] Volchkov Vit. V., Volchkova N. P., “Obraschenie lokalnogo preobrazovaniya Pompeiyu na kvaternionnom giperbolicheskom prostranstve”, Dokl. RAN, 379:5 (2001), 587–590 | MR | Zbl

[25] Berenstein C. A., Shahshahani M., “Harmonic analysis and the Pompeiu problem”, Amer. J. Math., 105 (1983), 1217–1229 | DOI | MR | Zbl

[26] Shahshahani M., Sitaram A., “The Pompeiu problem in exterior domains in symmetric spaces”, Integral Geometry (Brunswick, Maine, 1984), Contemp. Math., 63, Amer. Math. Soc., Providence, RI, 1987, 267–277 | MR

[27] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl

[28] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. T. 2. Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, 2-e izd., Nauka, M., 1974

[29] Vilenkin N. Ya., Spetsialnye funktsii i teoriya predstavlenii grupp, 2-e izd., Nauka, M., 1991 | MR | Zbl

[30] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. T. 1. Gipergeometricheskie funktsii. Funktsii Lezhandra, 2-e izd., Nauka, M., 1973

[31] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1976 | MR | Zbl