Bernstein weight inequalities and embedding theorems for model subspaces
Algebra i analiz, Tome 15 (2003) no. 5, pp. 138-168.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2003_15_5_a2,
     author = {A. D. Baranov},
     title = {Bernstein weight inequalities and embedding theorems for model subspaces},
     journal = {Algebra i analiz},
     pages = {138--168},
     publisher = {mathdoc},
     volume = {15},
     number = {5},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2003_15_5_a2/}
}
TY  - JOUR
AU  - A. D. Baranov
TI  - Bernstein weight inequalities and embedding theorems for model subspaces
JO  - Algebra i analiz
PY  - 2003
SP  - 138
EP  - 168
VL  - 15
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2003_15_5_a2/
LA  - ru
ID  - AA_2003_15_5_a2
ER  - 
%0 Journal Article
%A A. D. Baranov
%T Bernstein weight inequalities and embedding theorems for model subspaces
%J Algebra i analiz
%D 2003
%P 138-168
%V 15
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2003_15_5_a2/
%G ru
%F AA_2003_15_5_a2
A. D. Baranov. Bernstein weight inequalities and embedding theorems for model subspaces. Algebra i analiz, Tome 15 (2003) no. 5, pp. 138-168. http://geodesic.mathdoc.fr/item/AA_2003_15_5_a2/

[1] Kusis P., Vvedenie v teoriyu prostranstv $H^p$ s prilozheniem dokazatelstva Volffa teoremy o korone, Mir, M., 1984 | MR

[2] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980 | MR

[3] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR

[4] Dyakonov K. M., “Tselye funktsii eksponentsialnogo tipa i modelnye podprostranstva v $H^p$”, Zap. nauch. semin. LOMI, 190, 1991, 81–100 | MR

[5] Dyakonov K. M., “Differentiation in star-invariant subspaces. I. Boundedness and compactness”, J. Funct. Anal., 192:2 (2002), 364–386 | DOI | MR | Zbl

[6] Levin M. B., “Otsenka proizvodnoi ot meromorfnoi funktsii na granitse oblasti”, Teoriya funktsii, funkts. anal. i ikh pril., Vyp. 24, Kharkov, 1975, 68–85 | MR | Zbl

[7] Borwein P., Erdélyi T., Polynomials and polynomial inequalities, Grad. Texts in Math., 161, Springer-Verlag, New York, 1995 | MR

[8] Borwein P., Erdélyi T., “Sharp extensions of Bernstein's inequality to rational spaces”, Mathematika, 43 (1996):2 (1997), 413–423 | MR

[9] Li X., Mohapatra R. N., Rodriguez R. S., “Bernstein-type inequalities for rational functions with prescribed poles”, J. London Math. Soc. (2), 51 (1995), 523–531 | MR | Zbl

[10] Cohn W. S., “Carleson measures and operators on star-invariant subspaces”, J. Operator Theory, 15:1 (1986), 181–202 | MR | Zbl

[11] Dyakonov K. M., “Smooth functions in the range of a Hankel operator”, Indiana Univ. Math. J., 43 (1994), 805–838 | DOI | MR | Zbl

[12] Baranov A. D., “Neravenstvo Bernshteina v prostranstvakh de Branzha i teoremy vlozheniya”, Tr. S.-Peterburg. mat. o-va, 9, 2001, 23–53 | Zbl

[13] Aleksandrov A. B., “Prostoe dokazatelstvo teoremy Volberga–Treilya o vlozhenii koinvariantnykh podprostranstv operatora sdviga”, Zap. nauch. semin. POMI, 217, 1994, 26–35

[14] Cohn B., “Carleson measures for functions orthogonal to invariant subspaces”, Pacific J. Math., 103:2 (1982), 347–364 | MR | Zbl

[15] Volberg A. L., Treil S. R., “Teoremy vlozheniya dlya invariantnykh podprostranstv operatora obratnogo sdviga”, Zap. nauch. semin. LOMI, 149, 1986, 38–51 | MR

[16] Aleksandrov A. B., “O teoremakh vlozheniya dlya koinvariantnykh podprostranstv operatora sdviga. II”, Zap. nauch. semin. POMI, 262, 1999, 5–48 | Zbl

[17] Aleksandrov A. B., “On embedding theorems for coinvariant subspaces of the shift operator. I”, Complex Analysis, Operators, and Related Topics, Oper. Theory Adv. Appl., 113, Birkhäuser, Basel, 2000, 45–64 | MR | Zbl

[18] Cohn W. S., “Radial imbedding theorems for invariant subspaces”, Complex Variables Theory Appl., 17:1–2 (1991), 33–42 | MR | Zbl

[19] Volberg A. L., “Thin and thick families of rational fractions”, Complex Analysis and Spectral Theory (Leningrad, 1979/1980), Lecture Notes in Math., 864, Springer, Berlin–New York, 1981, 440–480 | MR

[20] Logvinenko V. N., Sereda Yu. F., “Ekvivalentnye normy v prostranstvakh tselykh funktsii eksponentsialnogo tipa”, Teoriya funktsii, funkts. anal. i ikh pril., Vyp. 20, Kharkov, 1974, 102–111 | MR | Zbl

[21] de Branges L., Hubert spaces of entire junctions, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1968 | Zbl

[22] Clark D. N., “One dimensional perturbations of restricted shifts”, J. Anal. Math., 25 (1972), 169–191 | DOI | MR | Zbl

[23] Ahern P. R., Clark D. N., “Radial limits and invariant subspaces”, Amer. J. Math., 92 (1970), 332–342 | DOI | MR | Zbl

[24] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl

[25] Calderón A.-P., “Commutators of singular integral operators”, Proc. Nat. Acad. Sci. U.S.A., 53 (1965), 1092–1099 | DOI | MR | Zbl

[26] Stein E. M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser., 43, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl

[27] Erikke B., Khavin V. P., “Sledy garmonicheskikh funktsii i sravnenie $L^p$-norm analiticheskikh funktsii”, Math. Nachr., 123 (1985), 225–254 | DOI | MR

[28] Ortega-Cerda J., Seip K., “Fourier frames”, Ann. of Math. (2), 155:3 (2002), 789–806 | DOI | MR | Zbl