Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2003_15_4_a7, author = {A. N. Panov}, title = {Irreducible representations of quantum solvable algebras at roots of~1}, journal = {Algebra i analiz}, pages = {204--235}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2003_15_4_a7/} }
A. N. Panov. Irreducible representations of quantum solvable algebras at roots of~1. Algebra i analiz, Tome 15 (2003) no. 4, pp. 204-235. http://geodesic.mathdoc.fr/item/AA_2003_15_4_a7/
[AM] Atya M. F., Makdonald I. G., Vvedenie v kommutativnuyu algebru, Mir, M., 1972 | MR
[BG1] Brown K. A., Gordon I., Poisson orders, symplection reflection algebras and representation theory, archived as math.RT/0201042 | MR
[BG2] Brown K., Gordon I., The ramification of the centres: quantized function algebras at roots of unity, archived as math.RT/9912042 | MR
[C1] Cauchon G., “Effacement des derivations et quotients premiers de $U_q^\omega(g)$”, J. Algebra, 260:2 (2003), 476–518 | DOI | MR | Zbl
[C2] Cauchon G., Spectre premier de $O_q(M_n(k))$: Image canonique et separation normale, Preprint
[DC-K] De Concini C., Kac V. G., “Representations of quantum groups at roots of 1”, Operator Algebras, Unitary Representation, Enveloping Algebras, and Invariant Theory (Paris, 1989), Progr. Math., 92, Birkhäuser Boston, Boston, MA, 1990, 471–506 | MR
[DCKP1] De Concini C., Kac V. G., Procesi C., Some quantum analogues of solvable lie groups, archived as hep-th/9308138
[DCKP2] De Concini C., Kac V. G., Procesi C., “Quantum coadjoint action”, J. Amer. Math. Soc., 5 (1992), 151–189 | DOI | MR | Zbl
[DC-L] De Concini C., Lyubashenko V., “Quantum function algebra at roots of 1”, Adv. Math., 108 (1994), 205–262 | DOI | MR | Zbl
[DC-PI] De Concini C., Procesi C., “Quantum groups, $D$-Modules”, Representation Theory, and Quantum Groups (Venice, 1992), Lecture Notes in Math., 1565, Springer, Berlin, 1993, 31–140 | MR | Zbl
[DC-P2] De Concini C., “Procesi G, Quantum Schubert cells and representations at roots of 1”, Algebraic Groups and Lie Groups, Austral. Math. Soc. Lect. Ser., 9, ed. G. I. Lehrer, Cambridge Univ. Press, Cambridge, 1997, 127–160 | MR | Zbl
[D] Diksme Zh., Universalnye obertyvayuschie algebry, Mir, M., 1978 | MR
[G] Goodearl K. R., “Prime spectra of quantized coordinate rings”, Interactions between Ring Theory and Representations of Algebras (Murcia), Lecture Notes in Pure and Appl. Math., 210, Dekker, New York, 2000, 205–237 | MR | Zbl
[GL1] Goodearl K. R., Letzter E. S., Prime ideals in skew and $q$-skew polynomial rings, Mem. Amer. Math. Soc., 109, no 521, 1994 | MR
[GL2] Goodearl K. R., Letzter E. S., “Prime factor algebras of the coordinate ring of quantum matrices”, Proc. Amer. Math. Soc., 121:4 (1994), 1017–1025 | DOI | MR | Zbl
[GLnl] Goodearl K. R., Lenagan T. H., “Prime ideals invariant under winding automorphisms in quantum matrices”, Internat. J. Math., 13:5 (2002), 497–532 | DOI | MR | Zbl
[GLn2] Goodearl K. R., Lenagan T. H., “Winding-invariant prime ideals in quantum $3\times3$ matrices”, J. Algebra, 260 (2003), 657–687 | DOI | MR | Zbl
[IK] Iorgov N. Z., Klimyk A. U., “Representations of the nonstandard (twisted) deformation $U'_q(so_n)$ for $q$ a root of unity”, Czechoslovak. J. Phys., 50:11 (2000), 1257–1263 | DOI | MR | Zbl
[J] Joseph A., Quantum groups and their primitive ideals, Ergeb. Math. Grenzgeb. (3), 29, Springer-Verlag, Berlin, 1995 | MR
[KM] Karasev M. V., Maslov V. P., Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991 | MR | Zbl
[L] Launois S., Les ideaux premiers invariants de $O_q(M_{m,p}(\mathbb C))$, Preprint
[LS] Levendorskii S. Z., Soĭbel'man Y. S., “Some applications of the quantum Weyl groups”, J. Geom. Phys., 7:2 (1990), 241–254 | DOI | MR
[Lu] Lusztig G., “Quantum groups at roots of 1”, Geom. Dedicate, 35 (1990), 89–113 | MR
[MC-R] McConnel J. C., Robson J. C., Noncommutative Noetherian rings, John Wiley and Sons, Ltd., Chichester, 1987 | MR | Zbl
[FO] Odesskii A. V., Feigin B. L., “Ellipticheskie algebry Sklyanina”, Funkts. anal. i ego pril., 23:3 (1989), 45–54 | MR
[P1] Panov A. N., “Fields of fractions of quantum solvable algebras”, J. Algebra, 236 (2001), 110–121 ; math.QA/9906060 | DOI | MR | Zbl
[P2] Panov A. N., “Stratification of prime spectrum of quantum solvable algebras”, Comm. Algebra, 29:9 (2001), 3801–3827 ; math.QA/0105131 | DOI | MR | Zbl
[P3] Panov A. N., “Quantum solvable algebras. Ideals and representations at roots of 1”, Transform. Groups, 7:4 (2002), 379–402 ; math.GA/0105250 | DOI | MR | Zbl
[Pie] Pirs R., Assotsiativnye algebry, Mir, M., 1986 | MR
[ST] Semenov-Tyan-Shanskii M. A., “Gruppy Puassona–Li. Kvantovyi printsip dvoistvennosti i skruchennyi kvantovyi dubl”, Teor. i mat. fiz., 93:2 (1992), 302–329 | MR