Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2003_15_4_a4, author = {A. L. Vol'berg and F. L. Nazarov}, title = {Heating of the {Beurling} operator and the estimates of its norm}, journal = {Algebra i analiz}, pages = {142--158}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2003_15_4_a4/} }
A. L. Vol'berg; F. L. Nazarov. Heating of the Beurling operator and the estimates of its norm. Algebra i analiz, Tome 15 (2003) no. 4, pp. 142-158. http://geodesic.mathdoc.fr/item/AA_2003_15_4_a4/
[1] Astala K., Iwaniec T., Saksman E., “Beltrami operators in the plane”, Duke Math. J., 107:1 (2001), 27–56 | DOI | MR | Zbl
[2] Astala K., “Area distortion of quasiconformal mappings”, Acta Math., 173 (1994), 37–60 | DOI | MR | Zbl
[3] Bañuelos R., Wang G., “Sharp inequalities for martingales with applications to the Beurling–Ahlfors and Riesz transforms”, Duke Math. J., 80:3 (1995), 575–600 | DOI | MR
[4] Bañuelos R., Mendez-Hernandez P., “Sharp inequalities Riesz transforms and space time Brownian motion”, Indiana Univ. Math. J. (to appear)
[5] Boyarskii B. V., “Gomeomorfnye resheniya sistem Beltrami”, Dokl. AN SSSR, 102:4 (1955), 661–664 | MR
[6] Boyarskii B. V., “Obobschennye resheniya sistemy differentsialnykh uravnenii pervogo poryadka ellipticheskogo tipa s razryvnymi koeffitsientami”, Mat. sb., 43(85):4 (1957), 451–503 | MR
[7] Bojarski B. V., “Quasiconformal mappings and general structural properties of systems of nonlinear equations elliptic in the sense of Lavrent'ev”, Sympos. Math., 18, Academic Press, London, 1976, 485–499 | MR
[8] Bojarski B. V., Iwaniec T., “Quasiconformal mappings and non-linear elliptic equations in two variables. I, II”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 22 (1974), 473–484 | MR
[9] Bañuelos R., Méndez-Hernández P., “Sharp inequalities for heat kernels of Schrödinger operators and applications to spectral gaps”, J. Funct. Anal., 176:2 (2000), 368–399 | DOI | MR
[10] Burkholder D. L., “Explorations in martingale theory and its applications”, École d'Été de Probabilités de Saint-Flour XIX-1989, Lecture Notes in Math., 1464, Springer, Berlin, 1991, 1–66 | MR
[11] Burkholder D. L., “Boundary value problems and sharp inequalities for martingale transforms”, Ann. Probab., 12 (1984), 647–702 | DOI | MR | Zbl
[12] Buckley S., “Estimates for operator norms on weighted spaces and reverse Jensen inequalities”, Trans. Amer. Math. Soc., 340:1 (1993), 253–272 | DOI | MR | Zbl
[13] Fefferman R., Kenig C., Pipher J., “The theory of weights and the Dirichlet problem for elliptic equations”, Ann. of Math. (2), 134:1 (1991), 65–124 | DOI | MR | Zbl
[14] Garcia-Cuerva J., Rubio de Francia J., Weighted norm inequalities and related topics, North-Holland Math. Stud., 116, North-Holland Publishing Co., Amsterdam etc., 1985 | MR | Zbl
[15] Gehring F. W., “Open problems”, Proceedings of Roumanian–Finnish Seminar on Teichmuller Spaces and Quasiconformal Mappings, 1969, 306
[16] Gehring F. W., “The $L^p$-integrability of the partial derivatives of a quasiconformal mapping”, Acta Math., 130 (1973), 265–277 | DOI | MR | Zbl
[17] Gehring F. W., “Topics in quasiconformal mappings”, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, CA, 1986), Amer. Math. Soc., Providence, RI, 1987, 62–80 | MR
[18] Gehring F. W., Reich E., “Area distortion under quasiconformal mappings”, Ann. Acad. Sci. Fenn. Ser A I, 388 (1966), 1–15 | MR
[19] Iwaniec T., “Extremal inequalities in Sobolev spaces and quasiconformal mappings”, Z. Anal. Anwendungen, 1 (1982), 1–16 | MR | Zbl
[20] Iwaniec T., “The best constant in a BMO-inequality for the Beurling–Ahlfors transform”, Michigan Math. J., 33 (1986), 387–394 | DOI | MR | Zbl
[21] Iwaniec T., “Hubert transform in the complex plane and area inequalities for certain quadratic differentials”, Michigan Math. J., 34 (1987), 407–434 | DOI | MR | Zbl
[22] Iwaniec T., “$L^p$-theory of quasiregular mappings”, Quasiconformal Space Mappings, Lecture Notes in Math., 1508, Springer, Berlin, 1992, 39–64 | MR
[23] Iwaniec T., Martin G., “Quasiregular mappings in even dimensions”, Acta Math., 170:1 (1993), 29–81 | DOI | MR | Zbl
[24] Iwaniec T., Martin G., “Riesz transforms and related singular integrals”, J. Reine Angew. Math., 473 (1996), 25–57 | MR | Zbl
[25] Petermichl St., Wittwer J., A sharp weighted estimate on the norm of Hubert transform via invariant $A_2$ characteristic of the weight, Preprint, Michigan State Univ., 2000
[26] Wittwer J., Thesis, Univ. Chicago, 2000
[27] Lehto O., “Quasiconformal mappings and singular integrals”, Sympos. Math., 18, Academic Press, London, 1976, 429–453 | MR
[28] Lehto O., Virtanen K., Quasiconformal mappings in the plane, Grundlehren Math. Wiss., 126, Springer-Verlag, New York etc., 1973 | MR | Zbl
[29] Nazarov F., Treil S., Volberg A., “The Bellman functions and two-weght inequalities for Haar multipliers”, J. Amer. Math. Soc., 12 (1999), 909–928 | DOI | MR | Zbl
[30] Petermichl S., Volberg A., “Heating of Ute Ahlfors-Beurling operator, weakly quasiregular maps on the plane are quasiregular”, Duke Math. J., 112:2 (2002), 281–305 | DOI | MR | Zbl
[31] Stein E., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Monogr. Harmon. Anal. III, Princeton Math. Ser., 43, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl
[32] Stroock D. W., Probability theory, an analytic view, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl
[33] A. Volberg, “Bellman approach to some problems in harmonic analysis”, Exp. No. 19, Seminaire Equations aux derivees partielles, Centre de mathematiques Laurent Schwartz, 2001–2002, 14