Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2003_15_3_a4, author = {A. V. Malyutin and N. Yu. Netsvetaev}, title = {Dehornoy order on the braid group and transformations of closed braids}, journal = {Algebra i analiz}, pages = {170--187}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2003_15_3_a4/} }
A. V. Malyutin; N. Yu. Netsvetaev. Dehornoy order on the braid group and transformations of closed braids. Algebra i analiz, Tome 15 (2003) no. 3, pp. 170-187. http://geodesic.mathdoc.fr/item/AA_2003_15_3_a4/
[1] Birman J. S., Braids, links, and mapping class groups, Ann. of Math. Stud., 82, Princeton Univ. Press, Princeton, NJ, 1974 | MR
[2] Birman J., Menasco W., “Studying links via closed braids. IV. Composite links and split links”, Invent. Math., 102 (1990), 115–139 | DOI | MR | Zbl
[3] Birman J., Menasco W., “Studying links via closed braids. V. The unlink”, Trans. Amer. Math. Soc., 329 (1992), 585–606 | DOI | MR | Zbl
[4] Birman J., Menasco W., Stabilization in the braid groups (with applications to transverse knots), Preprint, 2002 | MR
[5] Burckel S., “The wellordering on positive braids”, J. Pure Appl. Algebra, 120:1 (1997), 1–17 | DOI | MR | Zbl
[6] Cerf C., Maes A., “A family of Bnmnian links based on Edwards' construction of Venn diagrams”, J. Knot Theory Ramifications, 10:1 (2001), 97–107 | DOI | MR | Zbl
[7] Cromwell P., “Positive braids are visually prime”, Proc. London Math. Soc. (3), 67:2 (1993), 384–424 | DOI | MR | Zbl
[8] Dehomoy P., Braids and self-distributivity, Progr. Math., 192, Birkhäuser Verlag, Basel, 2000 | MR
[9] Dynnikov I. A., Arc-presentations of links. Monotonic simplification, Preprint, 2002 | MR
[10] Kirby R. (ed.), “Problems in low-dimensional topology”, Geometric Topology (Athens, GA, 1993), AMS/IP Stud. Adv. Math., 2, pt. 2, Amer. Math. Soc., Providence, RI, 1997, 35–473 | MR | Zbl
[11] Laver R., “Braid group actions on left distributive structures and well orderings in the braid groups”, J. Pure Appl. Algebra, 108:1 (1996), 81–98 | DOI | MR | Zbl
[12] Malyutin A. V., “Uporyadocheniya na gruppakh kos, operatsii nad zamknutymi kosami i podtverzhdenie gipotez Menasko”, Zap. nauch. semin. POMI, 267, 2000, 163–169 | Zbl
[13] Malyutin A. V., “Bystrye algoritmy raspoznavaniya i sravneniya kos”, Zap. nauch. semin. POMI, 279, 2001, 197–217 | MR | Zbl
[14] Short H., Wiest B., “Orderings of mapping class groups after Thurston”, Enseign. Math. (2), 46 (2000), 279–312 | MR | Zbl