Linear-similar Sz.-Nagy--Foias model in a domain
Algebra i analiz, Tome 15 (2003) no. 2, pp. 190-237.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2003_15_2_a3,
     author = {D. V. Yakubovich},
     title = {Linear-similar {Sz.-Nagy--Foias} model in a domain},
     journal = {Algebra i analiz},
     pages = {190--237},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2003_15_2_a3/}
}
TY  - JOUR
AU  - D. V. Yakubovich
TI  - Linear-similar Sz.-Nagy--Foias model in a domain
JO  - Algebra i analiz
PY  - 2003
SP  - 190
EP  - 237
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2003_15_2_a3/
LA  - ru
ID  - AA_2003_15_2_a3
ER  - 
%0 Journal Article
%A D. V. Yakubovich
%T Linear-similar Sz.-Nagy--Foias model in a domain
%J Algebra i analiz
%D 2003
%P 190-237
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2003_15_2_a3/
%G ru
%F AA_2003_15_2_a3
D. V. Yakubovich. Linear-similar Sz.-Nagy--Foias model in a domain. Algebra i analiz, Tome 15 (2003) no. 2, pp. 190-237. http://geodesic.mathdoc.fr/item/AA_2003_15_2_a3/

[1] Arov D. Z., “Passivnye lineinye statsionarnye dinamicheskie sistemy”, Sib. mat. zh., 20:2 (1979), 211–228 | MR | Zbl

[2] Arov D. Z., Nudelman M. A., “Priznaki podobiya vsekh minimalnykh passivnykh realizatsii zadannoi peredatochnoi funktsii (matritsy rasseyaniya i soprotivleniya)”, Mat. sb., 193:6 (2002), 3–24 | MR | Zbl

[3] Vasyunin V. I., Kupin S., “Kriterii podobiya dissipativnogo integralnogo operatora normalnomu”, Algebra i analiz, 13:3 (2001), 65–104 | MR

[4] Gokhberg I. Ts., Krein M. G., “Ob odnom opisanii operatorov szhatiya, podobnykh unitarnym”, Funkts. anal. i pril., 1:1 (1967), 38–60 | MR | Zbl

[5] Gubreev G. M., “Spektralnaya teoriya regulyarnykh kvazieksponent i regulyarnykh $B$-predstavimykh vektor-funktsii (metod proektirovaniya: 20 let spustya)”, Algebra i analiz, 12:6 (2000), 1–97 | MR

[6] Kapustin V. V., “Spektralnyi analiz pochti unitarnykh operatorov”, Algebra i analiz, 13:5 (2001), 44–68 | MR | Zbl

[7] Likhtarnikov A. L., Yakubovich V. A., “Chastotnaya teorema dlya uravnenii evolyutsionnogo tipa”, Sib. mat. zh., 17:5 (1976), 1069–1085 | MR | Zbl

[8] Malamud M. M., “Kriterii podobiya zamknutogo operatora samosopryazhennomu”, Ukr. mat. zh., 37:1 (1985), 49–56 | MR | Zbl

[9] Malamud M. M., “O podobii treugolnogo operatora diagonalnomu”, Zap. nauch. semin. POMI, 270, 2000, 201–241 | MR | Zbl

[10] Naboko S. N., “Funktsionalnaya model teorii vozmuschenii i ee prilozheniya k teorii rasseyaniya”, Tr. Mat. in-ta AN SSSR, 147, 1980, 86–114 | MR | Zbl

[11] Naboko S. N., “Ob usloviyakh podobiya unitarnym i samosopryazhennym operatoram”, Funkts. anal. i ego pril., 18:1 (1984), 16–27 | MR | Zbl

[12] Naboko S. N., Faddeev M. M., “Operatory modeli Fridrikhsa, podobnye samosopryazhennym”, Vestn. Leningr. un-ta. Ser. fiz., khim., 1990, no. 4, 78–82 | MR

[13] Nikolskii N. K., Lektsii ob operatore sdviga, Nauka, M., 1980 | MR

[14] Pavlov B. S., “Ob usloviyakh otdelimosti spektralnykh komponent dissipativnogo operatora”, Izv. AN SSSR. Ser. mat., 39:1 (1975), 123–148 | Zbl

[15] Pavlov B., “Nonphysical sheet for perturbed Jacobian matrices”, Algebra i analiz, 6:3 (1994), 185–199 | MR

[16] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, GITTL, M.-L., 1950

[17] Ryzhov V. A., “Absolyutno nepreryvnye i singulyarnye podprostranstva nesamosopryazhennogo operatora”, Zap. nauch. semin. POMI, 222, 1995, 163–202

[18] Sakhnovich L. A., “Dissipativnye operatory s absolyutno nepreryvnym spektrom”, Tr. Mosk. mat. o-va, 19, 1968, 211–270 | Zbl

[19] Solomyak B. M., “O funktsionalnoi modeli dlya dissipativnykh operatorov. Beskoordinatnyi podkhod”, Zap. nauch. semin. LOMI, 178, 1989, 57–91

[20] Sekefalvi-Nad V., Foyash Ch., Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR

[21] Fedorov S. I., “O garmonicheskom analize v mnogosvyaznoi oblasti i kharakter-avtomorfnykh prostranstvakh Khardi”, Algebra i analiz, 9:2 (1997), 192–240 | Zbl

[22] Shtraus A. V., “Kharakteristicheskie funktsii lineinykh operatorov”, Izv. AN SSSR. Ser. mat., 24:1 (1960), 43–74 | Zbl

[23] Khille E., Fillips R. S., Funktsionalnyi analiz i polugruppy, IL, M., 1962

[24] Yakubovich V. A., “Chastotnaya teorema dlya sluchaya, kogda prostranstva sostoyanii i upravlenii – gilbertovy, i ee primenenie v nekotorykh zadachakh sinteza optimalnogo upravleniya. II”, Sib. mat. zh., 16:5 (1975), 1081–1102 | MR | Zbl

[25] Alpay D., Vinnikov V., “Finite dimensional de Branges spaces on Riemann surfaces”, J. Funct. Anal., 189:2 (2002), 283–324 | DOI | MR | Zbl

[26] Arov D. Z., Nudelman M. A., “Passive linear stationary dynamical scattering systems with continuous time”, Integral Equations Operator Theory, 24 (1996), 1–45 | DOI | MR | Zbl

[27] Arova Z., “On $J$-unitary nodes with strongly regular $J$-inner characteristic functions in the Hardy class $H_2^{n\times n}$”, Operator Theoretical Methods (Timio̧ara, 1998), Theta Found., Bucharest, 2000, 29–38 | MR | Zbl

[28] Avdonin S. A., Ivanov S. A., “Families of exponentials”, The method of moments in controllability problems for distributed parameter systems, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[29] Ball J. A., “A lifting theorem for operator models of finite rank on multiply-connected domains”, J. Operator Theory, 1 (1979), 3–25 | MR | Zbl

[30] Ball J. A., Cohen N., “De Branges–Rovnyak operator models and systems theory: a survey”, Topics in Matrix and Operator Theory (Rotterdam, 1989), Oper. Theory Adv. Appl., 50, Birkhäuser, Basel, 1991, 93–136 | MR

[31] Benamara N.-E., Nikolski N., “Resolvent tests for similarity to a normal operator”, Proc. London Math. Soc. (3), 78:3 (1999), 585–626 | DOI | MR | Zbl

[32] de Branges L., Rovnyak J., “Canonical models in quantum scattering theory”, Perturbation Theory and its Application in Quantum Mechanics (Madison, 1965), Wiley, New York, 1966, 295–392 | MR

[33] Clark D. N., “On a similarity theory for rational Toeplitz operators”, J. Reine Angew. Math., 320 (1980), 6–31 | MR | Zbl

[34] Curtain R. F., Zwart H. J., An introduction to infinite-dimensional linear systems theory, Texts Appl. Math., 21, Springer-Verlag, New York, 1995 | MR | Zbl

[35] Datko R., “Extending a theorem of A. M. Lyapunov to Hubert space”, J. Math. Anal. Appl., 32 (1970), 610–616 | DOI | MR | Zbl

[36] Duren P. L., Theory of $H^p$-spaces, Pure Appl. Math., 38, Academic Press, New York–London, 1970 | MR

[37] Dym H., “On Riccati equations and reproducing kernel spaces”, Recent Advances in Operator Theory (Groningen, 1998), Oper. Theory Adv. Appl., 124, Birkhäuser, Basel, 2001, 189–215 | MR | Zbl

[38] Foiaş C., Frazho A. E., The commutant lifting approach to interpolation problems, Oper. Theory Adv. Appl., 44, Birkhäuse, Basel, 1990 | MR | Zbl

[39] Fuhrmann P. A., Linear systems and operators in Hubert space, McGraw-Hill, New York, 1981 | MR | Zbl

[40] Fuhrmann P. A., A polynomial approach to linear algebra, Springer-Verlag, New York, 1996 | MR

[41] Hasumi M., “Invariant subspace theorems for finite Riemann surfaces”, Canad. J. Math., 18 (1966), 240–255 | MR | Zbl

[42] Jacob B., Partington J. R., “The Weiss conjecture on admissibility of observation operators for contraction semigroups”, Integral Equations Operator Theory, 40 (2001), 231–243 | DOI | MR | Zbl

[43] Jacob B., Partington J. R., Pott S., “Conditions for admissibility of observation operators and boundedness of Hankel operators”, Integral Equations Oper. Theory, 47:3 (2003), 315–338 | DOI | MR | Zbl

[44] Kaashoek M. A., Verduyn Lunel S. M., “Characteristic matrices and spectral properties of evolutionary systems”, Trans. Amer. Math. Soc., 334 (1992), 479–517 | DOI | MR | Zbl

[45] Kalton N. J., Le Merdy C., “Solution of a problem of Feller concerning similarity”, J. Operator Theory, 47 (2002), 379–387 | MR | Zbl

[46] Komornik V., Exact controllability and stabilization. The multiplier method, Research in Applied Mathematics, 36, Masson, J. Wiley and Sons, Paris, Chichester, 1994 | MR | Zbl

[47] Kupin S., “Linear resolvent growth test for similarity of a weak contraction to a normal operator”, Ark. Mat., 39 (2001), 95–119 | DOI | MR | Zbl

[48] Kupin S., Treil S., “Linear resolvent growth of a weak contraction does not imply its similarity to a normal operator”, Illinois J. Math., 45:1 (2001), 229–242 | MR | Zbl

[49] Le Merdy C., “On dilation theoiy for $C^0$ – semigroups on Hubert space”, Indiana Univ. Math. J., 45:4 (1996), 945–959 | MR | Zbl

[50] Le Merdy C., “The similarity problem for bounded analytic semigroups on Hubert space”, Semigroup Forum, 56 (1998), 205–224 | DOI | MR | Zbl

[51] Le Merdy C., “The Weiss conjecture for bounded analytic semigroups”, J. Lond. Math. Soc., II. Ser., 67:3 (2003), 715–738 | DOI | MR | Zbl

[52] Le Merdy C., “A bounded compact semigroup on Hilbert space not similar to a contraction one”, Semigroups of Operators: Theory and Applications (Newport Beach, CA, 1998), Progr. Nonlinear Differential Equations Appl., 42, Birkhäuser, Basel, 2000, 213–216 | MR | Zbl

[53] Le Merdy C., Similarities of $\omega$-accrefive operators, Prépubl. Lab. Math. Besançon no. 2002/07, Univ. France Comté, Centre Nat. Rech. Sci., Besancon, 2002

[54] Lions J.-L., Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, V. 1, Rech. Math. Appl., 8, Masson, Paris, 1988 ; V. 2, 9 | MR

[55] Livšic M. S., Kravitsky N., Markus A. S., Vinnikov V., Theory of commuting nonselfadjoint operators, Math. Appl., 332, Kluwer Acad. Publishers Group, Dordrecht, 1995 | MR | Zbl

[56] Verduyn Lunel S. M., Yakubovich D. V., “A functional model approach to linear neutral functional-differential equations”, Integral Equations Operator Theory, 27 (1997), 347–378 | DOI | MR | Zbl

[57] McIntosh A., “Operators which have an $H^\infty$ functional calculus”, Miniconference on Operator Theory and Partial Differential Equations (North Ryde, 1986), Proc. Centre Math. Anal. Austral. Nat. Univ., 14, Austral. Nat. Univ., Canberra, 1986, 210–231 | MR | Zbl

[58] McCullough S., “Commutant lifting on a two holed domain”, Integral Equations Operator Theory, 35, no. 1, 1999, 65–84 | MR | Zbl

[59] Nikolski N. K., “Contrôlabilité à une renormalisation près et petits opérateurs de controle”, J. Math. Pures Appl. (9), 77:5 (1998), 439–479 | MR | Zbl

[60] Nikolski N. K., Vasyunin V. I., “Elements of spectral theory in terms of the free function model. I. Basic constructions”, Holomorphic Spaces (Berkeley, CA, 1995), Math. Sci. Res. Inst. Publ., 33, Cambridge Univ. Press, Cambridge, 1998, 211–302 | MR | Zbl

[61] Nikolski N. K., Operators, functions, and systems: an easy reading. Vol. 1. Hardy, Hankel, and Toeplitz., Math. Surveys Monogr., 92, Amer. Math. Soc., Providence, RI, 2002 ; Vol. 2. Model operators and systems, 93 | MR | Zbl | Zbl

[62] Paulsen V. I., Completely bounded maps and dilations, Pitman Res. Notes Math. Ser., 146, Longman, Wiley, New York, 1986 | MR | Zbl

[63] Pazy A., Semigroups of linear operators and applications to partial differential equations, Appl. Math. Sci., 44, Springer-Verlag, New York, 1983 | MR | Zbl

[64] Pisier G., “A polynomially bounded operator on Hilbert space which is not similar to a contraction”, J. Amer. Math. Soc., 10:2 (1997), 351–369 | DOI | MR | Zbl

[65] Pritchard A. J., Salamon D., “The linear quadratic control problem for infinite-dimensional systems with unbounded input and output operators”, SIAM J. Control Optim., 25 (1987), 121–144 | DOI | MR | Zbl

[66] Staffans O., “Quadratic optimal control of well-posed linear systems”, SIAM J. Control Optim., 37 (1999), 131–164 | DOI | MR | Zbl

[67] Staffans O., Weiss G., “Transfer functions of regular linear systems. II. The system operator and the Lax–Phillips semigroup”, Trans. Amer. Math. Soc., 354:8 (2002), 3229–3262 | DOI | MR | Zbl

[68] Vasyunin V. I., Makarov N. G., “A model for noncontractions and stability of the continuous spectrum”, Complex Analysis and Spectral Theory (Leningrad, 1979/1980), Lecture Notes in Math., 864, Springer, Berlin–New York, 1981, 365–412 | MR

[69] Voichick M., “Invariant subspaces on Riemann surfaces”, Canad. J. Math., 18 (1966), 399–403 | MR | Zbl

[70] Weiss G., “Admissible observation operators for linear semigroups”, Israel J. Math., 65 (1989), 17–43 | DOI | MR | Zbl

[71] Weiss G., “Admissibility of unbounded control operators”, SIAM J. Control Optim., 29 (1989), 527–545 | DOI | MR

[72] Xia D., “On the kernels associated with a class of hyponormal operators”, Integral Equations Operator Theory, 6:3 (1983), 444–452 | DOI | MR | Zbl

[73] Yakubovich D. V., Spectral properties of smooth finite rank pertubations of a planar Lebesgue spectrum cyclic normal operator, Report no. 15 (1990/91), Inst. Mittag-Leffler, Stockholm

[74] Yakubovich D. V., “Spectral properties of smooth perturbations of normal operators with planar Lebesgue spectrum”, Indiana Univ. Math. J., 42 (1993), 55–83 | DOI | MR | Zbl

[75] Yakubovich D. V., “Dual piecewise analytic bundle shift models of linear operators”, J. Funct. Anal., 136:2 (1996), 294–330 | DOI | MR | Zbl

[76] Yakubovich D. V., A similarity version of the Nagy–Foias model, duality and exact controllability, 17th International Conference on Operator Theory (Timisoara, 1998): Thesis of Reports

[77] Yakubovich D. V., “Subnormal operators of finite type. II. Structure theorems”, Rev. Mat. Iberoamericana, 14:3 (1998), 623–681 | MR | Zbl

[78] Zuazua E., “Some problems and results on the controllability of partial differential equations”, European Congress of Mathematics, Vol. 2 (Budapest, 1996), Progr. Math., 169, Birkhäuser, Basel, 1998, 276–311 | MR | Zbl

[79] Tikhonov A. S., “Funktsionalnaya model i dvoistvennost spektralnykh komponent dlya operatorov s nepreryvnym spektrom na krivoi”, Algebra i analiz, 14:4 (2002), 158–195 | MR | Zbl