The sharp constant in the reverse H\"older inequality for the muckenhoupt weights
Algebra i analiz, Tome 15 (2003) no. 1, pp. 73-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2003_15_1_a2,
     author = {V. I. Vasyunin},
     title = {The sharp constant in the reverse {H\"older} inequality for the muckenhoupt weights},
     journal = {Algebra i analiz},
     pages = {73--117},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2003_15_1_a2/}
}
TY  - JOUR
AU  - V. I. Vasyunin
TI  - The sharp constant in the reverse H\"older inequality for the muckenhoupt weights
JO  - Algebra i analiz
PY  - 2003
SP  - 73
EP  - 117
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2003_15_1_a2/
LA  - ru
ID  - AA_2003_15_1_a2
ER  - 
%0 Journal Article
%A V. I. Vasyunin
%T The sharp constant in the reverse H\"older inequality for the muckenhoupt weights
%J Algebra i analiz
%D 2003
%P 73-117
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2003_15_1_a2/
%G ru
%F AA_2003_15_1_a2
V. I. Vasyunin. The sharp constant in the reverse H\"older inequality for the muckenhoupt weights. Algebra i analiz, Tome 15 (2003) no. 1, pp. 73-117. http://geodesic.mathdoc.fr/item/AA_2003_15_1_a2/

[1] Coifman R. R., Fefferman C., “Weighted norm inequalities for maximal functions and singular integrals”, Studia Math., 51:3 (1974), 241–250 | MR | Zbl

[2] Nazarov F., Treil S., Volberg A., “Bellman function in stochastic control and harmonic analysis”, Systems, Approximation, Singular Integral Operators, and Related Topics (Bordeaux, 2000), Oper. Theory Adv. Appl., 129, Birkhäuser, Basel, 2001, 393–423 | MR | Zbl

[3] Khrushchev S. V., “A description of weights satisfying the $A_\infty$ condition of Muckenhoupt”, Proc. Amer. Math. Soc., 90 (1984), 253–257 | DOI | MR | Zbl

[4] Nazarov F. L., Treil S. R., “Okhota na funktsiyu Bellmana: prilozheniya k otsenkam singulyarnykh integralnykh operatorov i k drugim klassicheskim zadacham garmonicheskogo analiza”, Algebra i analiz, 8:5 (1996), 32–162 | MR

[5] Stein E. M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser., 43, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl

[6] Dynkin E. M., Osilenker B. P., “Vesovye otsenki singulyarnykh integralov i ikh prilozheniya”, Itogi nauki i tekhn. Ser. Mat. analiz, 21, VINITI, M., 1983, 42–129 | MR