Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2003_15_1_a1, author = {S. V. Buyalo}, title = {Estimation of the volume entropy for graph-manifolds of nonpositive curvature}, journal = {Algebra i analiz}, pages = {63--72}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2003_15_1_a1/} }
S. V. Buyalo. Estimation of the volume entropy for graph-manifolds of nonpositive curvature. Algebra i analiz, Tome 15 (2003) no. 1, pp. 63-72. http://geodesic.mathdoc.fr/item/AA_2003_15_1_a1/
[BW] Ballmann W., Wojtkowski M., “An estimate for the measure-theoretic entropy of geodesic flows”, Ergodic Theory Dynam. Systems, 9 (1989), 271–279 | DOI | MR | Zbl
[БК] Buyalo S. V., Kobelskii V. L., “Geometrizatsiya graf-mnogoobrazii. II. Izometricheskaya geometrizatsiya”, Algebra i analiz, 7:3 (1995), 96–117 | MR | Zbl
[BS] Buyalo S., Schroeder V., “On the asymptotic geometry of nonpositively curved graphmanifolds”, Trans. Amer. Math. Soc., 353 (2001), 853–875 | DOI | MR | Zbl
[CK] Croke C., Kleiner B., The geodesic flow and a nonpositively cwved graph manifold, , 1999 arXiv:math.DG/9911170 | Zbl
[HS] Hummel C., Schroeder V., “Tits geometry of cocompact real-analytic Hadamard manifolds of dimension 4”, Differential Geom. Appl., 11 (1999), 129–143 | DOI | MR | Zbl
[L] Leeb B., “3-manifolds with(out) metrics of nonpositive curvature”, Invent. Math., 122 (1995), 277–289 | DOI | MR | Zbl
[M] Manning A., “Topological entropy for geodesic flows”, Ann. Math. (2), 110 (1979), 567–573 | DOI | MR | Zbl