Invariants of quasitrivial tori and the Rost invariant
Algebra i analiz, Tome 14 (2002) no. 5, pp. 110-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

For any absolutely simple, simply connected linear algebraic group $G$ over a field $F$. Rost has defined invariants for the torsors under $G$ with values in the Galois cohomology group $H^3(F,\mathbb Q/\mathbb Z(2))$. In this paper, an explicit description of these invariants is given for the torsors induced from the center of $G$ in the case where $G$ is of type $A_n$ or $D_n$. As an application, it is shown that the multipliers of the unitary similitudes satisfy a relation involving the discriminant algebra.
@article{AA_2002_14_5_a6,
     author = {A. S. Merkurjev and R. Parimala and J.-P. Tignol},
     title = {Invariants of quasitrivial tori and the {Rost} invariant},
     journal = {Algebra i analiz},
     pages = {110--151},
     publisher = {mathdoc},
     volume = {14},
     number = {5},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2002_14_5_a6/}
}
TY  - JOUR
AU  - A. S. Merkurjev
AU  - R. Parimala
AU  - J.-P. Tignol
TI  - Invariants of quasitrivial tori and the Rost invariant
JO  - Algebra i analiz
PY  - 2002
SP  - 110
EP  - 151
VL  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2002_14_5_a6/
LA  - en
ID  - AA_2002_14_5_a6
ER  - 
%0 Journal Article
%A A. S. Merkurjev
%A R. Parimala
%A J.-P. Tignol
%T Invariants of quasitrivial tori and the Rost invariant
%J Algebra i analiz
%D 2002
%P 110-151
%V 14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2002_14_5_a6/
%G en
%F AA_2002_14_5_a6
A. S. Merkurjev; R. Parimala; J.-P. Tignol. Invariants of quasitrivial tori and the Rost invariant. Algebra i analiz, Tome 14 (2002) no. 5, pp. 110-151. http://geodesic.mathdoc.fr/item/AA_2002_14_5_a6/