Invariants of quasitrivial tori and the Rost invariant
Algebra i analiz, Tome 14 (2002) no. 5, pp. 110-151
Cet article a éte moissonné depuis la source Math-Net.Ru
For any absolutely simple, simply connected linear algebraic group $G$ over a field $F$. Rost has defined invariants for the torsors under $G$ with values in the Galois cohomology group $H^3(F,\mathbb Q/\mathbb Z(2))$. In this paper, an explicit description of these invariants is given for the torsors induced from the center of $G$ in the case where $G$ is of type $A_n$ or $D_n$. As an application, it is shown that the multipliers of the unitary similitudes satisfy a relation involving the discriminant algebra.
@article{AA_2002_14_5_a6,
author = {A. S. Merkurjev and R. Parimala and J.-P. Tignol},
title = {Invariants of quasitrivial tori and the {Rost} invariant},
journal = {Algebra i analiz},
pages = {110--151},
year = {2002},
volume = {14},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AA_2002_14_5_a6/}
}
A. S. Merkurjev; R. Parimala; J.-P. Tignol. Invariants of quasitrivial tori and the Rost invariant. Algebra i analiz, Tome 14 (2002) no. 5, pp. 110-151. http://geodesic.mathdoc.fr/item/AA_2002_14_5_a6/