Asymptotics of Fourier and Laplace transforms in weighted spaces of analytic functions
Algebra i analiz, Tome 14 (2002) no. 4, pp. 107-140
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the asymptotics of the Fourier transform in weighted Hardy spaces of analytic functions in the upper half-plane, and of the Laplace transform in weighted spaces of entire functions of zero exponential type. The results are applied to two closely related problems posed by Dyn'kin: we find the asyniptotics of the depth of zero for flat functions in non-quasianalytic Denjoy–Carleman classes, and of the exact majorant in a version of the Carleman–Levinson–Sjöberg $\log$-$\log$-theorem.
Keywords:
Flat non-quasianalytic functions, the $\log$-$\log$-theorem, asymptotics of the Fourier and Laplace transform.
@article{AA_2002_14_4_a6,
author = {V. Matsaev and M. Sodin},
title = {Asymptotics of {Fourier} and {Laplace} transforms in weighted spaces of analytic functions},
journal = {Algebra i analiz},
pages = {107--140},
year = {2002},
volume = {14},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AA_2002_14_4_a6/}
}
V. Matsaev; M. Sodin. Asymptotics of Fourier and Laplace transforms in weighted spaces of analytic functions. Algebra i analiz, Tome 14 (2002) no. 4, pp. 107-140. http://geodesic.mathdoc.fr/item/AA_2002_14_4_a6/