Relaxation of convex variational problems with linear growth defined on classes of vector-valued functions
Algebra i analiz, Tome 14 (2002) no. 1, pp. 26-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a bounded Lipschitz domain $\Omega\subset\mathbb R^n$ and a function $u_0\in W{}_1^1(\Omega;\mathbb R^N)$, the following minimization problem is considered: $$ (\mathcal P)\colon\int_\Omega f(\nabla u)\,dx\to\min\quad\text{in}\quad u_0+\overset\circ W{}_1^1(\Omega;\mathbb R^N), $$ where $f\colon\mathbb R^{nN}\to[0,\infty)$ is a strictly convex integrand. Let $\mathcal M$ denote the set of all $L^1$-cluster points of minimizing sequences of problem $(\mathcal P)$. It is shown that the geometric relaxation of problem $(\mathcal P)$ coincides with the relaxation based on the notion of the extended Lagrangian; moreover, it is proved that the elements $u$ of $\mathcal M$ are in one-to-one correspondence with the solutions of the relaxed problems.
Keywords: variational problems, linear growth, generalized minimizers, relaxation, functions of bounded variation.
@article{AA_2002_14_1_a1,
     author = {M. Bildhauer and M. Fuchs},
     title = {Relaxation of convex variational problems with linear growth defined on classes of vector-valued functions},
     journal = {Algebra i analiz},
     pages = {26--45},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2002_14_1_a1/}
}
TY  - JOUR
AU  - M. Bildhauer
AU  - M. Fuchs
TI  - Relaxation of convex variational problems with linear growth defined on classes of vector-valued functions
JO  - Algebra i analiz
PY  - 2002
SP  - 26
EP  - 45
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2002_14_1_a1/
LA  - en
ID  - AA_2002_14_1_a1
ER  - 
%0 Journal Article
%A M. Bildhauer
%A M. Fuchs
%T Relaxation of convex variational problems with linear growth defined on classes of vector-valued functions
%J Algebra i analiz
%D 2002
%P 26-45
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2002_14_1_a1/
%G en
%F AA_2002_14_1_a1
M. Bildhauer; M. Fuchs. Relaxation of convex variational problems with linear growth defined on classes of vector-valued functions. Algebra i analiz, Tome 14 (2002) no. 1, pp. 26-45. http://geodesic.mathdoc.fr/item/AA_2002_14_1_a1/