Relaxation of convex variational problems with linear growth defined on classes of vector-valued functions
Algebra i analiz, Tome 14 (2002) no. 1, pp. 26-45
Cet article a éte moissonné depuis la source Math-Net.Ru
For a bounded Lipschitz domain $\Omega\subset\mathbb R^n$ and a function $u_0\in W{}_1^1(\Omega;\mathbb R^N)$, the following minimization problem is considered: $$ (\mathcal P)\colon\int_\Omega f(\nabla u)\,dx\to\min\quad\text{in}\quad u_0+\overset\circ W{}_1^1(\Omega;\mathbb R^N), $$ where $f\colon\mathbb R^{nN}\to[0,\infty)$ is a strictly convex integrand. Let $\mathcal M$ denote the set of all $L^1$-cluster points of minimizing sequences of problem $(\mathcal P)$. It is shown that the geometric relaxation of problem $(\mathcal P)$ coincides with the relaxation based on the notion of the extended Lagrangian; moreover, it is proved that the elements $u$ of $\mathcal M$ are in one-to-one correspondence with the solutions of the relaxed problems.
Keywords:
variational problems, linear growth, generalized minimizers, relaxation, functions of bounded variation.
@article{AA_2002_14_1_a1,
author = {M. Bildhauer and M. Fuchs},
title = {Relaxation of convex variational problems with linear growth defined on classes of vector-valued functions},
journal = {Algebra i analiz},
pages = {26--45},
year = {2002},
volume = {14},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AA_2002_14_1_a1/}
}
TY - JOUR AU - M. Bildhauer AU - M. Fuchs TI - Relaxation of convex variational problems with linear growth defined on classes of vector-valued functions JO - Algebra i analiz PY - 2002 SP - 26 EP - 45 VL - 14 IS - 1 UR - http://geodesic.mathdoc.fr/item/AA_2002_14_1_a1/ LA - en ID - AA_2002_14_1_a1 ER -
M. Bildhauer; M. Fuchs. Relaxation of convex variational problems with linear growth defined on classes of vector-valued functions. Algebra i analiz, Tome 14 (2002) no. 1, pp. 26-45. http://geodesic.mathdoc.fr/item/AA_2002_14_1_a1/