Continuous measures with large partial sums
Algebra i analiz, Tome 13 (2001) no. 3, pp. 171-178.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, in a weak sense, every measure in $M(\mathbb T)$ supported by a sufficiently singular Cantor set has asymptotically large Fourier partial sums. It is also shown that every measure in $M(\mathbb T)$ whose Fourier partial sums satisfy a mild growth condition has nontrivial null sets.
Keywords: Dirichlet kernel, Lebesgue constants, Cantor sets.
@article{AA_2001_13_3_a8,
     author = {A. Olofsson},
     title = {Continuous measures with large partial sums},
     journal = {Algebra i analiz},
     pages = {171--178},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2001_13_3_a8/}
}
TY  - JOUR
AU  - A. Olofsson
TI  - Continuous measures with large partial sums
JO  - Algebra i analiz
PY  - 2001
SP  - 171
EP  - 178
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2001_13_3_a8/
LA  - en
ID  - AA_2001_13_3_a8
ER  - 
%0 Journal Article
%A A. Olofsson
%T Continuous measures with large partial sums
%J Algebra i analiz
%D 2001
%P 171-178
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2001_13_3_a8/
%G en
%F AA_2001_13_3_a8
A. Olofsson. Continuous measures with large partial sums. Algebra i analiz, Tome 13 (2001) no. 3, pp. 171-178. http://geodesic.mathdoc.fr/item/AA_2001_13_3_a8/