Discrete one-dimensional zero-order pseudodifferential operators on spaces with Muckenhoupt weight
Algebra i analiz, Tome 13 (2001) no. 2, pp. 116-129
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper explores operators on $\ell^p$ over the integers with an arbitrary Muckenhoupt weight. The main result is a Fredholm criterion for the operators in the Banach algebra generated by zero-order pseudodifferential operators with piecewise continuous symbols. In contrast to the common power weights, general Muckenhoupt weights may produce massive parts in the essential spectrum of these operators.
Keywords:
pseudodifferential operator, Muckenhoupt weight, sequence space, Toeplitz algebra.
Mots-clés : symbol calculus
Mots-clés : symbol calculus
@article{AA_2001_13_2_a3,
author = {A. B\"ottcher and M. Seybold},
title = {Discrete one-dimensional zero-order pseudodifferential operators on spaces with {Muckenhoupt} weight},
journal = {Algebra i analiz},
pages = {116--129},
year = {2001},
volume = {13},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AA_2001_13_2_a3/}
}
A. Böttcher; M. Seybold. Discrete one-dimensional zero-order pseudodifferential operators on spaces with Muckenhoupt weight. Algebra i analiz, Tome 13 (2001) no. 2, pp. 116-129. http://geodesic.mathdoc.fr/item/AA_2001_13_2_a3/