Invariant subspaces in quasi-Banach spaces of analytic functions
Algebra i analiz, Tome 12 (2000) no. 1, pp. 111-131
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $X$ be a quasi-Banach space of analytic functions on a finitely connected bounded domain $\Omega$ on the complex plane. We prove a theorem that reduces the study of the hyperinvariant subspaces of $X$ to that of the hyperinvariant subspaces of $X_1$ where $X_1$ is a quasi-Banach space of analytic functions on a domain $\Omega_1$ obtained from $\Omega$ by adding some of the bounded connectivity components of $\mathbb C\setminus\Omega$. In particular, the lattice structure (incident to the hyperinvariant subspaces) of a quasi-Banach space $X$ of analytic functions on the annulus $\{z\in\mathbb C:\rho<|z|<1\}$, $0<\rho<1$, is understood in terms of the lattice structure of the space $X_1$, the counterpart of $X$ for the unit disk.
Keywords:
Locally bounded spaces of analytic functions, invariant subspace, spectrum, linear operator, holomorphic functional calculus.
Mots-clés : multiplier index
Mots-clés : multiplier index
@article{AA_2000_12_1_a2,
author = {A. Abkar and H. Hedenmalm},
title = {Invariant subspaces in {quasi-Banach} spaces of analytic functions},
journal = {Algebra i analiz},
pages = {111--131},
year = {2000},
volume = {12},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AA_2000_12_1_a2/}
}
A. Abkar; H. Hedenmalm. Invariant subspaces in quasi-Banach spaces of analytic functions. Algebra i analiz, Tome 12 (2000) no. 1, pp. 111-131. http://geodesic.mathdoc.fr/item/AA_2000_12_1_a2/