Invariant subspaces in quasi-Banach spaces of analytic functions
Algebra i analiz, Tome 12 (2000) no. 1, pp. 111-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a quasi-Banach space of analytic functions on a finitely connected bounded domain $\Omega$ on the complex plane. We prove a theorem that reduces the study of the hyperinvariant subspaces of $X$ to that of the hyperinvariant subspaces of $X_1$ where $X_1$ is a quasi-Banach space of analytic functions on a domain $\Omega_1$ obtained from $\Omega$ by adding some of the bounded connectivity components of $\mathbb C\setminus\Omega$. In particular, the lattice structure (incident to the hyperinvariant subspaces) of a quasi-Banach space $X$ of analytic functions on the annulus $\{z\in\mathbb C:\rho|z|1\}$, $0\rho1$, is understood in terms of the lattice structure of the space $X_1$, the counterpart of $X$ for the unit disk.
Keywords: Locally bounded spaces of analytic functions, invariant subspace, multiplier index, spectrum, linear operator, holomorphic functional calculus.
@article{AA_2000_12_1_a2,
     author = {A. Abkar and H. Hedenmalm},
     title = {Invariant subspaces in {quasi-Banach} spaces of analytic functions},
     journal = {Algebra i analiz},
     pages = {111--131},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2000_12_1_a2/}
}
TY  - JOUR
AU  - A. Abkar
AU  - H. Hedenmalm
TI  - Invariant subspaces in quasi-Banach spaces of analytic functions
JO  - Algebra i analiz
PY  - 2000
SP  - 111
EP  - 131
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2000_12_1_a2/
LA  - en
ID  - AA_2000_12_1_a2
ER  - 
%0 Journal Article
%A A. Abkar
%A H. Hedenmalm
%T Invariant subspaces in quasi-Banach spaces of analytic functions
%J Algebra i analiz
%D 2000
%P 111-131
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2000_12_1_a2/
%G en
%F AA_2000_12_1_a2
A. Abkar; H. Hedenmalm. Invariant subspaces in quasi-Banach spaces of analytic functions. Algebra i analiz, Tome 12 (2000) no. 1, pp. 111-131. http://geodesic.mathdoc.fr/item/AA_2000_12_1_a2/